scholarly journals Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra

2004 ◽  
Vol 54 (2) ◽  
pp. 513-517 ◽  
Author(s):  
Raúl Rivas ◽  
Martha E. Trujillo ◽  
Manuel Sánchez ◽  
Pedro F. Mateos ◽  
Eustoquio Martínez-Molina ◽  
...  

A xylanolytic and phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra in Salamanca was characterized by a polyphasic approach. The novel strain, designated XIL02T, was Gram-positive, aerobic, catalase- and oxidase-negative, rod-shaped and non-motile. Phylogenetically and chemotaxonomically, it was related to members of the genus Microbacterium. According to 16S rRNA gene sequence analysis, it is closely related to Microbacterium arborescens and Microbacterium imperiale; however, DNA–DNA hybridization showed reassociation values less than 70 % with the type strains of these species. In chemotaxonomic analyses, the major menaquinones detected were MK-12, MK-13 and MK-11 and the major fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0; the peptidoglycan was of the type B2β. The G+C content determined was 69 mol%. Based on the present data, it is proposed that strain XIL02T (=LMG 20991T=CECT 5976T) be classified as the type strain of a novel Microbacterium species, for which the name Microbacterium ulmi sp. nov. is proposed.

2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3170-3174 ◽  
Author(s):  
Soo-Jin Kim ◽  
Jae-Hyung Ahn ◽  
Hang-Yeon Weon ◽  
Jun-Muk Lim ◽  
Song-Gun Kim ◽  
...  

One bacterial strain, designated 5GH38-5T, which was characterized as aerobic, Gram-staining-negative, non-flagellated rods, was isolated from a soil sample from a greenhouse in Sangju region, Republic of Korea. It grew at temperatures of 15–45 °C, pH 5.0–9.0 and NaCl concentrations (w/v) of 0–3.0 %. 16S rRNA gene sequence analysis showed the strain was closely related to Pseudoxanthomonas kaohsiungensis J36T (97.3 %), Pseudoxanthomonas suwonensis 4M1T (96.8 %), Pseudoxanthomonas daejeonensis TR6-08T (96.7 %) and Pseudoxanthomonas kalamensis JA40T (96.7 %). Its major fatty acids were iso-C16 : 0, anteiso-C15 : 0 and iso-C15 : 0. The predominant ubiquinone was Q-8. The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 71.1 mol%. The DNA–DNA hybridization value between strain 5GH38-5T and P. kaohsiungensis J36T was less than 70 %. The combined phenotypic, chemotaxonomic and phylogenetic data showed that strain 5GH38-5T could be clearly distinguished from closely related members of the genus Pseudoxanthomonas. Therefore, the results of this study indicated the existence of a novel species of the genus Pseudoxanthomonas, for which we propose the name Pseudoxanthomonas sangjuensis sp. nov., with strain 5GH38-5T ( = KACC 16961T = DSM 28345T = JCM 19948T) as the type strain.


2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2004 ◽  
Vol 54 (1) ◽  
pp. 235-239 ◽  
Author(s):  
Joachim Wink ◽  
Julia Gandhi ◽  
Reiner M. Kroppenstedt ◽  
Gerhard Seibert ◽  
Bettina Sträubler ◽  
...  

Strain DSM 44594T, which produces the glycopeptide antibiotic decaplanin, is a member of the genus Amycolatopsis based on 16S rRNA gene sequence analysis and chemotaxonomic properties. It is the first member of this genus that is reported to form pseudosporangia, which resemble those of members of the genus Kibdelosporangium. Phylogenetically, the novel taxon is related to Amycolatopsis orientalis, Amycolatopsis lurida, Amycolatopsis azurea, Amycolatopsis japonica and Amycolatopsis keratiniphila. Morphological, cultural and physiological properties, the production of a unique glycolipid and DNA–DNA similarity of <55 % with phylogenetically related strains reveal that strain DSM 44594T represents a novel species of the genus, for which the name Amycolatopsis decaplanina sp. nov. (type strain, FH 1845T=DSM 44594T=NRRL B-24209T) is proposed.


2010 ◽  
Vol 60 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Yoshimi Benno

The taxonomic position of strain JCM 2765T isolated from fermented cane molasses in Thailand was reinvestigated. Strain JCM 2765T was originally identified as representing Lactobacillus buchneri on the basis of biochemical and physiological characteristics. In the present study, 16S rRNA gene sequence analysis of strain JCM 2765T demonstrated a low level of similarity with the type strain of L. buchneri (92.5 %) and high levels with those of Lactobacillus collinoides (97.6 %) and Lactobacillus paracollinoides (98.0 %). Ribotyping was applied to investigate the relationships between strain JCM 2765T, L. collinoides and L. paracollinoides. The dendrogram based on ribotyping patterns showed one cluster for six strains of L. paracollinoides, and that strain JCM 2765T and L. collinoides JCM 1123T were each independent. Based on additional phenotypic findings and DNA–DNA hybridization results, strain JCM 2765T is considered to represent a novel species of the genus Lactobacillus, for which the name Lactobacillus similis sp. nov. is proposed. The type strain is JCM 2765T (=LMG 23904T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3196-3202 ◽  
Author(s):  
Van-An Hoang ◽  
Yeon-Ju Kim ◽  
Ngoc Lan Nguyen ◽  
Chang Ho Kang ◽  
Jong-Pyo Kang ◽  
...  

A novel Gram-staining-positive, rod-shaped bacterium, designated DCY100T, was isolated from rhizome of mountain ginseng root in Hwacheon mountain, Gangwon province, Republic of Korea. The 16S rRNA gene sequence analysis showed that strain DCY100T belonged to the genus Microbacterium and was most closely related to Microbacterium ginsengisoli KCTC 19189T (97.9 %), Microbacterium lacus JCM 15575T (97.2 %) and Microbacterium invictum DSM 19600T (97.1 %). The major menaquinones were MK-11 and MK-12. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The major fatty acids (>10.0 %) were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The cell-wall peptidoglycan contained the amino acids ornithine, alanine, glutamic acid and glycine; whole-cell sugars consisted of glucose, galactose, rhamnose and ribose. The DNA G+C content was 63.6 ± 0.7 mol%. The DNA–DNA hybridization relatedness values between strain DCY100T and Microbacterium ginsengisoli KCTC 19189T, Microbacterium lacus JCM 15575T and Microbacterium invictum DSM 19600T were 36.2 ± 0.4, 22.0 ± 3.0 and 15.3 ± 1.8 %, respectively. On the basis of phenotypic, chemotaxonomic and genotypic analyses, the isolate is classified as a representative of a novel species in the genus Microbacterium, for which the name Microbacterium rhizomatis DCY100T is proposed. The type strain is DCY100T ( = KCTC 39529T = JCM 30598T).


2012 ◽  
Vol 62 (Pt_3) ◽  
pp. 489-494 ◽  
Author(s):  
Shiou-Huei Chao ◽  
Yuko Kudo ◽  
Ying-Chieh Tsai ◽  
Koichi Watanabe

Three Gram-stain-positive strains were isolated from fermented mustard and were rod-shaped, non-motile, asporogenous, facultatively anaerobic, homofermentative and did not exhibit catalase activity. Comparative analyses of 16S rRNA, pheS and rpoA gene sequences demonstrated that the novel strains were members of the genus Lactobacillus. On the basis of 16S rRNA gene sequence analysis, the type strains of Lactobacillus crustorum (98.7 % similarity), Lactobacillus farciminis (98.9 %) and Lactobacillus mindensis (97.9 %) were the closest neighbours. However, DNA–DNA reassociation values with these strains were less than 50 %. Phenotypic and genotypic features demonstrated that these isolates represent a novel species of the genus Lactobacillus, for which the name Lactobacillus futsaii sp. nov. is proposed; the type strain is YM 0097T ( = JCM 17355T = BCRC 80278T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2095-2100 ◽  
Author(s):  
Mai Takahashi ◽  
Ken-ichiro Suzuki ◽  
Yasuyoshi Nakagawa

The taxonomic positions of five bacterial strains isolated from the Yaeyama Islands of Japan and ‘Microscilla arenaria’ NBRC 15982 were determined using a polyphasic taxonomic approach. 16S rRNA gene sequence analyses placed all of the strains close to the genus Flammeovirga. DNA–DNA hybridization studies, biochemical and physiological characterizations and chemotaxonomic analyses suggested that ‘M. arenaria’ NBRC 15982 and the five novel isolates represented two separate species of the genus Flammeovirga. Emendation of the genus Flammeovirga Nakagawa et al. 1997 and the species Flammeovirga aprica (Reichenbach 1989) Nakagawa et al. 1997 is proposed. In addition, ‘Microscilla arenaria’ Lewin 1969 is proposed as Flammeovirga arenaria nom. rev., comb. nov. (with the type strain NBRC 15982T=CIP 109101T) and the novel isolates are proposed as Flammeovirga yaeyamensis sp. nov. (type strain IR25-3T=NBRC 100898T=CIP 109099T).


2007 ◽  
Vol 57 (11) ◽  
pp. 2629-2635 ◽  
Author(s):  
Margarita Gomila ◽  
Botho Bowien ◽  
Enevold Falsen ◽  
Edward R. B. Moore ◽  
Jorge Lalucat

Three Gram-negative, rod-shaped, non-spore-forming bacteria (strains CCUG 52769T, CCUG 52770 and CCUG 52771) isolated from haemodialysis water were characterized taxonomically, together with five strains isolated from industrial waters (CCUG 52428, CCUG 52507, CCUG 52575T, CCUG 52590 and CCUG 52631). Phylogenetic analysis based on 16S rRNA gene sequences indicated that these isolates belonged to the class Betaproteobacteria and were related to the genus Pelomonas, with 16S rRNA gene sequence similarities higher than 99 % with the only species of the genus, Pelomonas saccharophila and to Pseudomonas sp. DSM 2583. The type strains of Mitsuaria chitosanitabida and Roseateles depolymerans were their closest neighbours (97.9 and 97.3 % 16S rRNA gene sequence similarity, respectively). Phylogenetic analysis was also performed for the internally transcribed spacer region and for three genes [hoxG (hydrogenase), cbbL/cbbM (Rubisco) and nifH (nitrogenase)] relevant for the metabolism of the genus Pelomonas. DNA–DNA hybridization, major fatty acid composition and phenotypical analyses were carried out, which included the type strain of Pelomonas saccharophila obtained from different culture collections (ATCC 15946T, CCUG 32988T, DSM 654T, IAM 14368T and LMG 2256T), as well as M. chitosanitabida IAM 14711T and R. depolymerans CCUG 52219T. Results of DNA–DNA hybridization, physiological and biochemical tests supported the conclusion that strains CCUG 52769, CCUG 52770 and CCUG 52771 represent a homogeneous phylogenetic and genomic group, including strain DSM 2583, clearly differentiated from the industrial water isolates and from the Pelomonas saccharophila type strain. On the basis of phenotypic and genotypic characteristics, these strains belong to two novel species within the genus Pelomonas, for which the names Pelomonas puraquae sp. nov. and Pelomonas aquatica sp. nov. are proposed. The type strains of Pelomonas puraquae sp. nov. and Pelomonas aquatica sp. nov. are CCUG 52769T (=CECT 7234T) and CCUG 52575T (=CECT 7233T), respectively.


2007 ◽  
Vol 57 (2) ◽  
pp. 347-352 ◽  
Author(s):  
Masataka Satomi ◽  
Birte Fonnesbech Vogel ◽  
Kasthuri Venkateswaran ◽  
Lone Gram

Two novel species belonging to the genus Shewanella are described on the basis of a polyphasic taxonomic approach. A total of 40 strains of Gram-negative, psychrotolerant, H2S-producing bacteria were isolated from marine fish (cod and plaice) caught in the Baltic Sea off Denmark. Strains belonging to group 1 (seven strains) were a lactate-assimilating variant of Shewanella morhuae with a G+C content of 44 mol%. The strains of group 2 (33 strains) utilized lactate, N-acetylglucosamine and malate but did not produce DNase or ornithine decarboxylase. Their G+C content was 47 mol%. Phylogenetic analysis of the 16S rRNA gene sequence data placed the two novel species within the genus Shewanella. Group 1 showed greatest sequence similarity with S. morhuae ATCC BAA-1205T (99.9 %). However, gyrB gene sequence analysis and DNA–DNA hybridization differentiated these isolates from S. morhuae, with 95.6 % sequence similarity and less than 57 % DNA relatedness, respectively. Group 2 strains shared more than 99 % 16S rRNA gene sequence similarity with the type strains of Shewanella colwelliana and Shewanella affinis, but gyrB sequence similarity (~85 %) and the results of DNA hybridization (~28 %) indicated that the new isolates represented a novel species. Furthermore, when compared to each other, the type strains of S. colwelliana and S. affinis had almost identical gyrB sequences and significantly high DNA reassociation values (76–83 %), indicating that they belonged to the same species. Based on the conclusions of this study, we propose the novel species Shewanella glacialipiscicola sp. nov. (type strain T147T=LMG 23744T=NBRC 102030T) for group 1 strains and Shewanella algidipiscicola sp. nov. (type strain S13T=LMG 23746T=NBRC 102032T) for group 2 strains, and we propose that Shewanella affinis as a later heterotypic synonym of Shewanella colwelliana.


2010 ◽  
Vol 60 (7) ◽  
pp. 1522-1526 ◽  
Author(s):  
Ho-Bin Kim ◽  
Sathiyaraj Srinivasan ◽  
Gayathri Sathiyaraj ◽  
Lin-Hu Quan ◽  
Se-Hwa Kim ◽  
...  

A Gram-negative, non-spore-forming, rod-shaped bacterium, designated strain DCY01T, was isolated from soil from a ginseng field in South Korea and was characterized in order to determine its taxonomic position. 16S rRNA gene sequence analysis revealed that strain DCY01T belonged to the Gammaproteobacteria and was most closely related to Stenotrophomonas koreensis KCTC 12211T (98.4 % similarity), Stenotrophomonas humi R-32729T (97.2 %), Stenotrophomonas terrae R-32768 (97.1 %), Stenotrophomonas maltophilia DSM 50170T (96.9 %) and Stenotrophomonas nitritireducens DSM 12575T (96.8 %). Chemotaxonomic analyses revealed that strain DCY01T possessed a quinone system with Q-8 as the predominant compound, and iso-C15 : 0 (28.2 %), C16 : 0 10-methyl (13.2 %), iso-C15 : 1 F (10.8 %) and C15 : 0 (7.5 %) as major fatty acids, corroborating assignment of strain DCY01T to the genus Stenotrophomonas. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The results of DNA–DNA hybridization and physiological and biochemical tests clearly demonstrated that strain DCY01T represents a species distinct from recognized Stenotrophomonas species. Based on these data, DCY01T (=KCTC 12539T=NBRC 101154T) should be classified as the type strain of a novel species of the genus Stenotrophomonas, for which the name Stenotrophomonas ginsengisoli sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document