scholarly journals Amycolatopsis decaplanina sp. nov., a novel member of the genus with unusual morphology

2004 ◽  
Vol 54 (1) ◽  
pp. 235-239 ◽  
Author(s):  
Joachim Wink ◽  
Julia Gandhi ◽  
Reiner M. Kroppenstedt ◽  
Gerhard Seibert ◽  
Bettina Sträubler ◽  
...  

Strain DSM 44594T, which produces the glycopeptide antibiotic decaplanin, is a member of the genus Amycolatopsis based on 16S rRNA gene sequence analysis and chemotaxonomic properties. It is the first member of this genus that is reported to form pseudosporangia, which resemble those of members of the genus Kibdelosporangium. Phylogenetically, the novel taxon is related to Amycolatopsis orientalis, Amycolatopsis lurida, Amycolatopsis azurea, Amycolatopsis japonica and Amycolatopsis keratiniphila. Morphological, cultural and physiological properties, the production of a unique glycolipid and DNA–DNA similarity of <55 % with phylogenetically related strains reveal that strain DSM 44594T represents a novel species of the genus, for which the name Amycolatopsis decaplanina sp. nov. (type strain, FH 1845T=DSM 44594T=NRRL B-24209T) is proposed.

2010 ◽  
Vol 60 (10) ◽  
pp. 2458-2461 ◽  
Author(s):  
Julia Downes ◽  
Anne C. R. Tanner ◽  
Floyd E. Dewhirst ◽  
William G. Wade

Two strains of anaerobic, Gram-stain-negative bacilli isolated from the human oral cavity (D033B-12-2T and D080A-01) were subjected to a comprehensive range of phenotypic and genotypic tests and were found to be distinct from any previously described species. 16S rRNA gene sequence analysis revealed that the strains were related most closely to the type strain of Prevotella marshii (93.5 % sequence identity). The novel strains were saccharolytic and produced acetic acid and succinic acid as end products of fermentation. The principal cellular long-chain fatty acids were C16 : 0, iso-C14 : 0, C14 : 0, anteiso-C15 : 0, iso-C16 : 0 and C16 : 0 3-OH. The G+C content of the DNA of strain D033B-12-2T was 44 mol%. Strains D033B-12-2T and D080A-01 are considered to represent a single novel species of the genus Prevotella, for which the name Prevotella saccharolytica sp. nov. is proposed. The type strain is D033B-12-2T (=DSM 22473T =CCUG 57944T).


2007 ◽  
Vol 57 (9) ◽  
pp. 1988-1994 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Seung Bum Kim ◽  
Kae Kyoung Kwon ◽  
Dong Sung Shin ◽  
Xuseong Luo ◽  
...  

A taxonomic study of a novel marine, heterotrophic, non-gliding, halotolerant and light-pink-pigmented bacterium was carried out using a polyphasic approach. 16S rRNA gene sequence analysis revealed that strain KMM 6241T is a member of the phylum Bacteroidetes. Strain KMM 6241T formed a cluster with the genera Algoriphagus, Chimaereicella and Hongiella with sequence similarities of 94.0–98.2 %. Hongiella ornithinivorans was the closest relative of the novel isolate. Comparative analysis of phenotypic, chemotaxonomic and genotypic characteristics of strain KMM 6241T and representatives of the genera Algoriphagus, Chimaereicella and Hongiella revealed many similar features. Consequently, phylogenetic evidence supported by phenotypic and genotypic similarities support the transfer of members of the genera Chimaereicella and Hongiella to the genus Algoriphagus and the establishment of a novel species, Algoriphagus vanfongensis sp. nov., with strain KMM 6241T (=DSM 17529T=KCTC 12716T) as the type strain.


2007 ◽  
Vol 57 (11) ◽  
pp. 2453-2457 ◽  
Author(s):  
S. Kalyan Chakravarthy ◽  
T. N. R. Srinivas ◽  
P. Anil Kumar ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two Gram-negative, vibrioid, phototrophic, purple non-sulfur strains, JA131T and JA135T, were isolated from marine habitats. Strain JA131T is non-motile but strain JA135T is motile by means of a pair of monopolar flagella. Both strains have an obligate requirement for NaCl for growth. The intracellular photosynthetic membranes of the two novel strains are of the vesicular type. Bacteriochlorophyll a and probably rhodovibrine are present as photosynthetic pigments. Niacin, thiamine and p-aminobenzoic acid are required as growth factors for both novel strains. Based on 16S rRNA gene sequence analysis, morphological and physiological characteristics, strains JA131T and JA135T are significantly different from each other and from other species of the genus Roseospira and thus represent two novel species for which the names Roseospira visakhapatnamensis sp. nov. and Roseospira goensis sp. nov. are proposed, respectively. The type strain of Roseospira visakhapatnamensis sp. nov. is JA131T (=ATCC BAA-1365T=JCM 14190T) and the type strain of Roseospira goensis sp. nov. is JA135T (=ATCC BAA-1364T=JCM 14191T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2577-2582 ◽  
Author(s):  
Myungjin Lee ◽  
Sung-Geun Woo ◽  
Joonhong Park ◽  
Soon-Ae Yoo

A Gram-negative, non-motile, aerobic bacterial strain, designated MJ20T, was isolated from farm soil near Daejeon (South Korea) and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ20T belongs to the family Cytophagaceae, class Sphingobacteria, and was related most closely to Dyadobacter fermentans DSM 18053T (98.9 % sequence similarity), Dyadobacter beijingensis JCM 14200T (98.0 %) and Dyadobacter ginsengisoli KCTC 12589T (96.4 %). The G+C content of the genomic DNA of strain MJ20T was 48.5 mol%. The detection of MK-7 as the predominant menaquinone and a fatty acid profile with summed feature 4 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), iso-C15 : 0, C16 : 0 and C16 : 1 ω5c as major components supported the affiliation of strain MJ20T to the genus Dyadobacter. The new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to D. fermentans DSM 18053T (mean±sd of three determinations, 47±7 %) and D. beijingensis JCM 14200T (38±8 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain MJ20T (=KCTC 22481T =JCM 16232T) should be classified in the genus Dyadobacter as the type strain of a novel species, for which the name Dyadobacter soli sp. nov. is proposed.


2010 ◽  
Vol 60 (8) ◽  
pp. 1721-1724 ◽  
Author(s):  
Jong-Sik Jin ◽  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Masao Hattori ◽  
Yoshimi Benno

An equol-producing bacterium, strain DZET, which was isolated from human faeces, was characterized by morphological, biochemical and molecular methods. The isolate was Gram-positive, obligately anaerobic, non-spore-forming, asaccharolytic and rod-shaped. 16S rRNA gene sequence analysis showed 92.8, 91.0, 91.1 and 90.6 % similarities with Slackia faecicanis, Slackia exigua, Slackia heliotrinireducens and Slackia isoflavoniconvertens, respectively. Based on these data, we propose a novel species of the genus Slackia, Slackia equolifaciens sp. nov. The major cellular fatty acids are C14 : 0, C18 : 1 ω9c and C18 : 1 ω9c DMA (dimethyl acetal). The DNA G+C content of the strain is 60.8 mol%. The type strain of S. equolifaciens sp. nov. is DZET (=JCM 16059T =CCUG 58231T).


2006 ◽  
Vol 56 (9) ◽  
pp. 2113-2117 ◽  
Author(s):  
Akiko Kageyama ◽  
Yoko Takahashi ◽  
Satoshi Ōmura

Three novel bacterial strains were isolated from a soil sample collected in Japan by culture on a GPM agar plate supplemented with superoxide dismutase and catalase. The strains were Gram-positive, catalase-positive, non-motile bacteria with l-ornithine as a diagnostic diamino acid of the peptidoglycan. The acyl type of the peptidoglycan was N-glycolyl. The major menaquinones were MK-12, 13 and 14. Mycolic acids were not detected. G+C contents of the DNA were in the range 69–71 mol%. Comparative 16S rRNA gene sequence analysis revealed that the isolates belonged to the genus Microbacterium and were closely related to Microbacterium terregens, Microbacterium aurum, Microbacterium koreense, Microbacterium schleiferi and Microbacterium lacticum. However, M. aurum, M. koreense and M. lacticum clearly differed from the isolated strains based on the presence of l-lysine as the cell-wall diamino acid and various other chemotaxonomic characteristics. Levels of DNA–DNA relatedness showed that the isolated strains represented three separate genomic species. Based on both phenotypic and genotypic data, the following novel species of the genus Microbacterium are proposed: Microbacterium deminutum sp. nov. (type strain KV-483T=NRRL B-24453T=NBRC 101278T), Microbacterium pumilum sp. nov. (type strain KV-488T=NRRL B-24452T=NBRC 101279T) and Microbacterium aoyamense sp. nov. (type strain KV-492T=NRRL B-24451T=NBRC 101280T).


2006 ◽  
Vol 56 (7) ◽  
pp. 1645-1649 ◽  
Author(s):  
Byung-Yong Kim ◽  
Hang-Yeon Weon ◽  
Sylvie Cousin ◽  
Seung-Hee Yoo ◽  
Soon-Wo Kwon ◽  
...  

Two yellow-pigmented, Gram-negative, rod-shaped bacterial strains, GH1-10T and GH29-5T, were isolated from greenhouse soils in Korea. 16S rRNA gene sequence analysis indicated that these strains were related to members of the genus Flavobacterium. Strain GH1-10T was most closely related to Flavobacterium psychrolimnae and Flavobacterium denitrificans, with sequence similarities of 95.9 and 95.2 %, respectively. Strain GH29-5T was most closely related to ‘Flavobacterium saliodium’, F. denitrificans and Flavobacterium frigoris, with sequence similarities of 94.3, 92.5 and 92.5 %, respectively. The major cellular fatty acids of GH1-10T were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c) and iso-C17 : 0 3-OH, and those of GH29-5T were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G and iso-C15 : 0 3-OH. Both strains contained menaquinone with six isoprene units (MK-6) as the sole quinone. The DNA G+C contents of GH1-10T and GH29-5T were 35 and 39 mol%, respectively. Based on the phylogenetic and phenotypic data presented, it is concluded that the two bacteria represent two separate novel species of the genus Flavobacterium. The names proposed to accommodate these organisms are Flavobacterium daejeonense sp. nov., with type strain GH1-10T (=KACC 11422T=DSM 17708T), and Flavobacterium suncheonense sp. nov., with type strain GH29-5T (=KACC 11423T=DSM 17707T).


2011 ◽  
Vol 61 (6) ◽  
pp. 1286-1292 ◽  
Author(s):  
Myungjin Lee ◽  
Leonid N. Ten ◽  
Sung-Geun Woo ◽  
Joonhong Park

A Gram-positive, aerobic to microaerophilic, non-motile bacterial strain, designated MJ21T, was isolated from farm soil and was characterized to determine its taxonomic position by using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain MJ21T was placed within the genus Agromyces, and exhibited relatively high levels of similarity to Agromyces ulmi XIL01T (97.8 %), Agromyces aurantiacus YIM 21741T (97.1 %), Agromyces mediolanus JCM 3346T (96.7 %), A. mediolanus JCM 1376 (99.1 %), A. mediolanus JCM 9632 (99.1 %), A. mediolanus JCM 9633 (98.9 %) and A. mediolanus JCM 9631 (96.5 %). Chemotaxonomic data also supported the classification of strain MJ21T within the genus Agromyces. The new isolate contained MK-12 as the predominant menaquinone and rhamnose, galactose and xylose as cell-wall sugars. The major cellular fatty acids (>10 % of the total) were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. Cell-wall amino acids were 2,4-diaminobutyric acid, glutamic acid, glycine and alanine. Diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids and one unidentified phospholipid were detected as polar lipids. The DNA G+C content of strain MJ21T was 73.4 mol%. However, levels of DNA–DNA relatedness between strain MJ21T and the seven phylogenetically closest Agromyces strains ranged from 14 to 56 %, showing clearly that the new isolate represents a novel genomic species. Strain MJ21T could be differentiated clearly from its phylogenetic neighbours on the basis of phenotypic, genotypic and chemotaxonomic features. Therefore, strain MJ21T is considered to represent a novel species of the genus Agromyces, for which the name Agromyces soli sp. nov. is proposed. The type strain is MJ21T ( = KCTC 19549T  = JCM 16247T).


2006 ◽  
Vol 56 (12) ◽  
pp. 2861-2866 ◽  
Author(s):  
Leonid N. Ten ◽  
Sang-Hoon Baek ◽  
Wan-Taek Im ◽  
Qing-Mei Liu ◽  
Zubair Aslam ◽  
...  

A Gram-positive, non-motile, endospore-forming bacterium, designated Gsoil 1517T, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized in order to determine its taxonomic position, using a polyphasic approach. It was found to rod-shaped and aerobic or facultatively anaerobic. It grew optimally at 30 °C and at pH 6.5–7.0. Comparative 16S rRNA gene sequence analysis showed that strain Gsoil 1517T forms a distinct phylogenetic lineage within the genus Bacillus, being related to Bacillus funiculus JCM 11201T (96.8 %). The strain showed less than 94.3 % sequence similarity with other Bacillus species. The G+C content of the genomic DNA was found to be 47.8 mol% and the predominant respiratory quinone was MK-7. The major fatty acids were iso-C15 : 0 (42.4 %), anteiso-C15 : 0 (17.4 %), iso-C14 : 0 (9.7 %) and C16 : 0 (6.0 %). On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1517T represents a novel species of the genus Bacillus, for which the name Bacillus panaciterrae sp. nov. is proposed. The type strain is Gsoil 1517T (=KCTC 13929T=CCUG 52470T=LMG 23408T).


2010 ◽  
Vol 60 (1) ◽  
pp. 187-190 ◽  
Author(s):  
Maki Kitahara ◽  
Mitsuo Sakamoto ◽  
Yoshimi Benno

The taxonomic position of strain JCM 2765T isolated from fermented cane molasses in Thailand was reinvestigated. Strain JCM 2765T was originally identified as representing Lactobacillus buchneri on the basis of biochemical and physiological characteristics. In the present study, 16S rRNA gene sequence analysis of strain JCM 2765T demonstrated a low level of similarity with the type strain of L. buchneri (92.5 %) and high levels with those of Lactobacillus collinoides (97.6 %) and Lactobacillus paracollinoides (98.0 %). Ribotyping was applied to investigate the relationships between strain JCM 2765T, L. collinoides and L. paracollinoides. The dendrogram based on ribotyping patterns showed one cluster for six strains of L. paracollinoides, and that strain JCM 2765T and L. collinoides JCM 1123T were each independent. Based on additional phenotypic findings and DNA–DNA hybridization results, strain JCM 2765T is considered to represent a novel species of the genus Lactobacillus, for which the name Lactobacillus similis sp. nov. is proposed. The type strain is JCM 2765T (=LMG 23904T).


Sign in / Sign up

Export Citation Format

Share Document