scholarly journals Rhodococcus gordoniae sp. nov., an actinomycete isolated from clinical material and phenol-contaminated soil

2004 ◽  
Vol 54 (2) ◽  
pp. 407-411 ◽  
Author(s):  
Amanda L. Jones ◽  
June M. Brown ◽  
Vachaspati Mishra ◽  
John D. Perry ◽  
Arnold G. Steigerwalt ◽  
...  

The taxonomic relationships of two actinomycetes provisionally assigned to the genus Rhodococcus were determined using a polyphasic taxonomic approach. The generic assignment was confirmed by 16S rRNA gene similarity data, as the organisms, strains MTCC 1534 and W 4937T, were shown to belong to the Rhodococcus rhodochrous subclade. These organisms had phenotypic properties typical of rhodococci; they were aerobic, Gram-positive, weakly acid-fast actinomycetes that showed an elementary branching-rod–coccus growth cycle and contained meso-diaminopimelic acid, arabinose and galactose in whole-organism hydrolysates, N-glycolated muramic acid residues, dehydrogenated menaquinones with eight isoprene units as the predominant isoprenologue and mycolic acids that co-migrated with those extracted from the type strain of R. rhodochrous. The strains had identical phenotypic profiles and belong to the same genomic species, albeit one distinguished from Rhodococcus pyridinivorans, with which they formed a distinct phyletic line. They were also distinguished from representatives of all of the species classified in the R. rhodochrous 16S rRNA gene tree using a set of phenotypic features. The genotypic and phenotypic data show that the strains merit recognition as a novel species of Rhodococcus. The name proposed is Rhodococcus gordoniae sp. nov., with the type strain W 4937T (=DSM 44689T=NCTC 13296T).

2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1786-1793 ◽  
Author(s):  
Wallace Rafael Souza ◽  
Rafael Eduardo Silva ◽  
Michael Goodfellow ◽  
Kanungnid Busarakam ◽  
Fernanda Sales Figueiro ◽  
...  

Strain SB026T was isolated from Brazilian rainforest soil and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological features consistent with its classification in the genus Amycolatopsis and formed a branch in the Amycolatopsis 16S rRNA gene tree together with Amycolatopsis bullii NRRL B-24847T, Amycolatopsis plumensis NRRL B-24324T, Amycolatopsis tolypomycina DSM 44544T and Amycolatopsis vancoresmycina NRRL B-24208T. It was related most closely to A. bullii NRRL B-24847T (99.0 % 16S rRNA gene sequence similarity), but was distinguished from this strain by a low level of DNA–DNA relatedness (~46 %) and discriminatory phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the isolate should be classified in the genus Amycolatopsis as representing a novel species, Amycolatopsis rhabdoformis sp. nov. The type strain is SB026T ( = CBMAI 1694T = CMAA 1285T = NCIMB 14900T).


2006 ◽  
Vol 56 (5) ◽  
pp. 1109-1115 ◽  
Author(s):  
Chunguang Xu ◽  
Liming Wang ◽  
Qingfeng Cui ◽  
Ying Huang ◽  
Zhiheng Liu ◽  
...  

The taxonomic status of six neutrotolerant acidophilic streptomycetes isolated from acidic soils in Yunnan Province, China, was established using a polyphasic approach. The morphological and chemotaxonomic characteristics revealed that the isolates belong to the genus Streptomyces. Almost complete 16S rRNA gene sequences of the isolates were determined and aligned with available corresponding sequences of representatives of the family Streptomycetaceae; phylogenetic trees were inferred using four tree-making algorithms. The isolates formed a distinct, albeit heterogeneous, subclade in the Streptomyces 16S rRNA gene tree together with the type strain of Streptomyces yeochonensis, but were readily distinguishable from the latter using DNA–DNA hybridization and phenotypic data. It was evident from the genotypic and phenotypic data that the isolates belonged to four novel Streptomyces species, for which the following names are proposed: Streptomyces guanduensis sp. nov. (type strain 701T=CGMCC 4.2022T=JCM 13274T), Streptomyces paucisporeus sp. nov. (type strain 1413T=CGMCC 4.2025T=JCM 13276T), Streptomyces rubidus sp. nov. (type strain 13c15T=CGMCC 4.2026T=JCM 13277T) and Streptomyces yanglinensis sp. nov. (type strain 1307T=CGMCC 4.2023T=JCM 13275T); isolates 317 and 913 belong to this latter species.


2006 ◽  
Vol 56 (4) ◽  
pp. 739-744 ◽  
Author(s):  
Jacques A. Soddell ◽  
Fiona M. Stainsby ◽  
Kathryn L. Eales ◽  
Reiner M. Kroppenstedt ◽  
Robert J. Seviour ◽  
...  

The taxonomic position of two mycolic-acid-producing actinomycetes, isolates J81T and J82, which were recovered from activated sludge foam, was clarified. Comparative 16S rRNA gene sequence studies indicated that the organisms formed a distinct lineage within the Corynebacterineae 16S rRNA gene tree. The taxonomic integrity of this group was underpinned by a wealth of phenotypic data, notably characteristic rudimentary right-angled branching. In addition, isolate J81T contained the following: meso-diaminopimelic acid, arabinose and galactose; N-glycolated muramic acid residues; a dihydrogenated menaquinone with eight isoprene units as the predominant isoprenologue; a fatty acid profile rich in oleic and palmitoleic acids and with relatively small proportions of myristic, stearic and tuberculostearic acids; mycolic acids with 44–52 carbons; and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides as major polar lipids. Strain J81T was found to have a chemotaxonomic profile that serves to distinguish it from representatives of all of the other taxa classified as belonging to the suborder Corynebacterineae. In the light of these data, it is proposed that the two isolates be classified in a novel monospecific genus. The name proposed for this taxon is Millisia brevis gen. nov., sp. nov.; strain J81T (=DSM 44463T=NRRL B-24424T) is the type strain of Millisia brevis.


2010 ◽  
Vol 60 (8) ◽  
pp. 1813-1823 ◽  
Author(s):  
Byung-Yong Kim ◽  
James E. M. Stach ◽  
Hang-Yeon Weon ◽  
Soon-Wo Kwon ◽  
Michael Goodfellow

Forty strains isolated from soil taken from a hay meadow were assigned to the genus Dactylosporangium on the basis of colonial properties. 16S rRNA gene sequence analysis showed that the isolates formed a group that was most closely related to the type strain of Dactylosporangium aurantiacum, but well separated from other Dactylosporangium type strains and from ‘Dactylosporangium salmoneum’ NRRL B-16294. Twelve of 13 representative isolates had identical 16S rRNA gene sequences and formed a subclade that was distinct from corresponding phyletic lines composed of the remaining isolate, strain BK63T, the ‘D. salmoneum’ strain and the type strains of recognized Dactylosporangium species. DNA–DNA relatedness data indicated that representatives of the multi-membered 16S rRNA gene subclade, isolate BK63T and the ‘D. salmoneum’ subclade formed distinct genomic species; all of these organisms had chemotaxonomic and morphological properties consistent with their classification in the genus Dactylosporangium. They were also distinguished from one another and from the type strains of recognized Dactylosporangium species based on a range of phenotypic properties. Combined genotypic and phenotypic data showed that isolate BK63T, isolates BK51T, BK53 and BK69, and strain NRRL B-16294T should be classified in the genus Dactylosporangium as representing novel species. The names proposed for these species are Dactylosporangium luridum sp. nov. (type strain BK63T  = DSM 45324T  = KACC 20933T  = NRRL B-24775T), Dactylosporangium luteum sp. nov. (type strain BK51T  = DSM 45323T  = KACC 20899T  = NRRL B-24774T) and Dactylosporangium salmoneum sp. nov., nom. rev. (type strain NRRL B-16294T  = ATCC 31222T  = DSM 43910T  = JCM 3272T  = NBRC 14103T).


2010 ◽  
Vol 60 (4) ◽  
pp. 769-775 ◽  
Author(s):  
Yashawant Kumar ◽  
Michael Goodfellow

A polyphasic study was undertaken to determine the taxonomic status of six strains received as Streptomyces hygroscopicus. The strains had chemotaxonomic and morphological properties typical of members of the genus Streptomyces and formed distinct phyletic lines in the Streptomyces 16S rRNA gene tree. These strains were distinguished from one another and from phylogenetically close neighbours using a combination of phenotypic properties. The combined genotypic and phenotypic data showed that all six strains form distinct centres of taxonomic variation within the genus Streptomyces. The following novel species are proposed to accommodate the strains: Streptomyces aldersoniae sp. nov. (type strain DSM 41909T =NRRL 18513T), Streptomyces angustmyceticus sp. nov., comb. nov. (type strain DSM 41683T=NRRL B-2347T), Streptomyces ascomycinicus sp. nov. (type strain DSM 40822T =NBRC 13981T), Streptomyces decoyicus sp. nov., comb. nov. (type strain DSM 41427T =NRRL 2666T), Streptomyces milbemycinicus sp. nov. (type strain DSM 41911T =NRRL 5739T) and Streptomyces wellingtoniae sp. nov. (type strain DSM 40632T =NRRL B-1503T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3476-3480 ◽  
Author(s):  
Long Jin ◽  
Hyung-Gwan Lee ◽  
So-Ra Ko ◽  
Chi-Yong Ahn ◽  
Hee-Mock Oh

A Gram-stain-positive, aerobic, non-motile, non-spore-forming, rod-shaped bacterium, designated strain PB158T, was isolated from grass soil sampled in Daejeon, Republic of Korea. Comparative 16S rRNA gene sequence studies placed the novel isolate in the class Actinobacteria, and most closely related to Jatrophihabitans endophyticus S9-650T and Jatrophihabitans soli KIS75-12T with 98.1 and 97.0 % 16S rRNA gene sequence similarity, respectively. Cells of strain PB158T formed yellow colonies on R2A agar, contained MK-9(H4) as the predominant menaquinone, meso-diaminopimelic acid as the diagnostic diamino acid, and included iso-C16 : 0, C18 : 1ω9c, and C17 : 1ω8c as the major fatty acids (>5 %). The acyl type was found to be N-glycolylated. The G+C content of genomic DNA of strain PB158T was 72.4 mol%. In DNA–DNA hybridizations, the DNA–DNA relatedness value observed between strain PB158T and the type strain of J. endophyticus was 21.8 % indicating that the two strains do not belong to the same species. Thus, the combined genotypic and phenotypic data supported the conclusion that strain PB158T represents a novel species of the genus Jatrophihabitans, for which the name Jatrophihabitans fulvus sp. nov. is proposed. The type strain is PB158T ( = KCTC 33605T = JCM 30448T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.


2010 ◽  
Vol 60 (2) ◽  
pp. 434-438 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Yong-Taek Jung ◽  
Mi-Hwa Lee ◽  
Tae-Kwang Oh

A Gram-stain-positive, motile, rod-shaped bacterial strain, ISL-17T, was isolated from a marine solar saltern of the Yellow Sea, Korea, and its taxonomic position was investigated by means of a polyphasic study. Strain ISL-17T grew optimally at pH 8.5–9.0, at 37 °C and in the presence of approximately 10 % (w/v) NaCl. It contained meso-diaminopimelic acid as the diagnostic diamino acid in the peptidoglycan, MK-7 as the predominant menaquinone and iso-C15 : 0, anteiso-C15 : 0 and iso-C16 : 0 as the major fatty acids. The DNA G+C content was 48.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain ISL-17T fell within the genus Alkalibacillus, clustering with Alkalibacillus salilacus BH163T with a bootstrap resampling value of 100 %. Strain ISL-17T exhibited 98.2 % 16S rRNA gene sequence similarity to A. salilacus BH163T and 95.8–96.5 % similarity to the type strains of the other Alkalibacillus species. The mean DNA–DNA relatedness value between strain ISL-17T and A. salilacus KCTC 3916T was 19 %. The phenotypic properties of strain ISL-17T, together with its phylogenetic and genetic distinctiveness, enable this strain to be differentiated from recognized Alkalibacillus species. On the basis of phenotypic, phylogenetic and genetic data, strain ISL-17T represents a novel species within the genus Alkalibacillus, for which the name Alkalibacillus flavidus sp. nov. is proposed; the type strain is ISL-17T (=KCTC 13258T =CCUG 56753T).


2020 ◽  
Vol 367 (9) ◽  
Author(s):  
Sooyeon Park ◽  
Siyu Chen ◽  
Jung-Sook Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

ABSTRACT A Gram-stain-negative bacterial strain, JBTF-M27T, was isolated from a tidal flat from Yellow Sea, Republic of Korea. Neighbor-joining phylogenetic tree of 16S rRNA gene sequences showed that strain JBTF-M27T fell within the clade comprising the type strains of Sulfitobacter species. Strain JBTF-M27T exhibited the highest 16S rRNA gene sequence similarity (98.8%) to the type strain of S. porphyrae. Genomic ANI and dDDH values of strain JBTF-M27T between the type strains of Sulfitobacter species were less than 76.1 and 19.2%, respectively. Mean DNA-DNA relatedness value between strain JBTF-M27T and the type strain of S. porphyrae was 21%. DNA G + C content of strain JBTF-M27T from genome sequence was 57.8% (genomic analysis). Strain JBTF-M27T contained Q-10 as the predominant ubiquinone and C18:1ω7c as the major fatty acid. The major polar lipids of strain JBTF-M27T were phosphatidylcholine, phosphatidylglycerol and one unidentified aminolipid. Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain JBTF-M27T is separated from recognized Sulfitobacter species. On the basis of the data presented, strain JBTF-M27T ( = KACC 21648T = NBRC 114356T) is considered to represent a novel species of the genus Sulfitobacter, for which the name Sulfitobacter sediminilitoris sp. nov. is proposed.


2010 ◽  
Vol 60 (8) ◽  
pp. 1904-1908 ◽  
Author(s):  
Kannika Duangmal ◽  
Ratchanee Mingma ◽  
Arinthip Thamchaipenet ◽  
Atsuko Matsumoto ◽  
Yoko Takahashi

The taxonomic position of a rhizosphere soil isolate, designated strain SR8.15T, was determined by using a polyphasic approach. Phylogenetic analysis based on an almost-complete 16S rRNA gene sequence of the strain showed that it formed a well-separated sub-branch within the radiation encompassing the genus Saccharopolyspora. Highest levels of 16S rRNA gene sequence similarity were found between strain SR8.15T and Saccharopolyspora shandongensis CGMCC 4.3530T (98.9 %) and Saccharopolyspora spinosa DSM 44228T (98.5 %). However, these strains shared low levels of DNA–DNA relatedness (<26 %). Strain SR8.15T had chemical characteristics consistent with its classification in the genus Saccharopolyspora. It contained meso-diaminopimelic acid as the diagnostic diamino acid. Whole-cell hydrolysates contained arabinose and galactose. The diagnostic phospholipids were phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol. The main menaquinone was MK-9(H4). No mycolic acid was detected. The predominant cellular fatty acid was iso-C16 : 0. The G+C content of the genomic DNA of strain SR8.15T was 70.3 mol%. Strain SR8.15T had a phenotypic profile that readily distinguished it from recognized representatives of the genus Saccharopolyspora. It is evident from its combined genotypic and phenotypic properties that strain SR8.15T represents a novel species of the genus Saccharopolyspora, for which the name Saccharopolyspora phatthalungensis sp. nov. is proposed. The type strain is SR8.15T (=TISTR 1921T=BCC 35844T=NRRL B-24798T).


Sign in / Sign up

Export Citation Format

Share Document