scholarly journals Neutrotolerant acidophilic Streptomyces species isolated from acidic soils in China: Streptomyces guanduensis sp. nov., Streptomyces paucisporeus sp. nov., Streptomyces rubidus sp. nov. and Streptomyces yanglinensis sp. nov.

2006 ◽  
Vol 56 (5) ◽  
pp. 1109-1115 ◽  
Author(s):  
Chunguang Xu ◽  
Liming Wang ◽  
Qingfeng Cui ◽  
Ying Huang ◽  
Zhiheng Liu ◽  
...  

The taxonomic status of six neutrotolerant acidophilic streptomycetes isolated from acidic soils in Yunnan Province, China, was established using a polyphasic approach. The morphological and chemotaxonomic characteristics revealed that the isolates belong to the genus Streptomyces. Almost complete 16S rRNA gene sequences of the isolates were determined and aligned with available corresponding sequences of representatives of the family Streptomycetaceae; phylogenetic trees were inferred using four tree-making algorithms. The isolates formed a distinct, albeit heterogeneous, subclade in the Streptomyces 16S rRNA gene tree together with the type strain of Streptomyces yeochonensis, but were readily distinguishable from the latter using DNA–DNA hybridization and phenotypic data. It was evident from the genotypic and phenotypic data that the isolates belonged to four novel Streptomyces species, for which the following names are proposed: Streptomyces guanduensis sp. nov. (type strain 701T=CGMCC 4.2022T=JCM 13274T), Streptomyces paucisporeus sp. nov. (type strain 1413T=CGMCC 4.2025T=JCM 13276T), Streptomyces rubidus sp. nov. (type strain 13c15T=CGMCC 4.2026T=JCM 13277T) and Streptomyces yanglinensis sp. nov. (type strain 1307T=CGMCC 4.2023T=JCM 13275T); isolates 317 and 913 belong to this latter species.

2004 ◽  
Vol 54 (2) ◽  
pp. 407-411 ◽  
Author(s):  
Amanda L. Jones ◽  
June M. Brown ◽  
Vachaspati Mishra ◽  
John D. Perry ◽  
Arnold G. Steigerwalt ◽  
...  

The taxonomic relationships of two actinomycetes provisionally assigned to the genus Rhodococcus were determined using a polyphasic taxonomic approach. The generic assignment was confirmed by 16S rRNA gene similarity data, as the organisms, strains MTCC 1534 and W 4937T, were shown to belong to the Rhodococcus rhodochrous subclade. These organisms had phenotypic properties typical of rhodococci; they were aerobic, Gram-positive, weakly acid-fast actinomycetes that showed an elementary branching-rod–coccus growth cycle and contained meso-diaminopimelic acid, arabinose and galactose in whole-organism hydrolysates, N-glycolated muramic acid residues, dehydrogenated menaquinones with eight isoprene units as the predominant isoprenologue and mycolic acids that co-migrated with those extracted from the type strain of R. rhodochrous. The strains had identical phenotypic profiles and belong to the same genomic species, albeit one distinguished from Rhodococcus pyridinivorans, with which they formed a distinct phyletic line. They were also distinguished from representatives of all of the species classified in the R. rhodochrous 16S rRNA gene tree using a set of phenotypic features. The genotypic and phenotypic data show that the strains merit recognition as a novel species of Rhodococcus. The name proposed is Rhodococcus gordoniae sp. nov., with the type strain W 4937T (=DSM 44689T=NCTC 13296T).


2006 ◽  
Vol 56 (10) ◽  
pp. 2265-2269 ◽  
Author(s):  
Jacques A. Soddell ◽  
Fiona M. Stainsby ◽  
Kathryn L. Eales ◽  
Robert J. Seviour ◽  
Michael Goodfellow

Three strains of non-motile, Gram-positive, filamentous actinomycetes, isolates J4T, J5 and J59, initially recognized microscopically in activated sludge foam by their distinctive branching patterns, were isolated by micromanipulation. The taxonomic positions of the isolates were determined using a polyphasic approach. Almost-complete 16S rRNA gene sequences of the isolates were aligned with corresponding sequences of representatives of the suborder Corynebacterineae and phylogenetic trees were inferred using three tree-making algorithms. The organisms formed a distinct phyletic line in the Gordonia 16S rRNA gene tree. The three isolates showed 16S rRNA gene sequence similarities within the range 96.9–97.2 % with their nearest phylogenetic neighbours, namely Gordonia bronchialis DSM 43247T and Gordonia terrae DSM 43249T. Strain J4T was shown to have a chemotaxonomic profile typical of the genus Gordonia and was readily distinguished from representatives of the genus on the basis of Curie-point pyrolysis mass spectrometric data. The isolates shared nearly identical phenotypic profiles that distinguished them from representatives of the most closely related Gordonia species. It is evident from the genotypic and phenotypic data that the three isolates belong to a novel Gordonia species. The name proposed for this taxon is Gordonia defluvii sp. nov.; the type strain is J4T (=DSM 44981T=NCIMB 14149T).


2010 ◽  
Vol 60 (4) ◽  
pp. 769-775 ◽  
Author(s):  
Yashawant Kumar ◽  
Michael Goodfellow

A polyphasic study was undertaken to determine the taxonomic status of six strains received as Streptomyces hygroscopicus. The strains had chemotaxonomic and morphological properties typical of members of the genus Streptomyces and formed distinct phyletic lines in the Streptomyces 16S rRNA gene tree. These strains were distinguished from one another and from phylogenetically close neighbours using a combination of phenotypic properties. The combined genotypic and phenotypic data showed that all six strains form distinct centres of taxonomic variation within the genus Streptomyces. The following novel species are proposed to accommodate the strains: Streptomyces aldersoniae sp. nov. (type strain DSM 41909T =NRRL 18513T), Streptomyces angustmyceticus sp. nov., comb. nov. (type strain DSM 41683T=NRRL B-2347T), Streptomyces ascomycinicus sp. nov. (type strain DSM 40822T =NBRC 13981T), Streptomyces decoyicus sp. nov., comb. nov. (type strain DSM 41427T =NRRL 2666T), Streptomyces milbemycinicus sp. nov. (type strain DSM 41911T =NRRL 5739T) and Streptomyces wellingtoniae sp. nov. (type strain DSM 40632T =NRRL B-1503T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1819-1824 ◽  
Author(s):  
Sooyeon Park ◽  
Ji-Min Park ◽  
Chul-Hyung Kang ◽  
Song-Gun Kim ◽  
Jung-Hoon Yoon

A Gram-stain-negative, non-motile, aerobic and pleomorphic bacterium, designated BS-W13T, was isolated from a tidal flat on the South Sea, South Korea, and its taxonomic position was investigated using a polyphasic approach. Strain BS-W13T grew optimally at 25 °C, at pH 7.0–8.0 and in the presence of 1.0–2.0 % (w/v) NaCl. Neighbour-joining and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences showed that strain BS-W13T clustered with the type strain of Seohaeicola saemankumensis , showing the highest sequence similarity (95.96 %) to this strain. Strain BS-W13T exhibited 16S rRNA gene sequence similarity values of 95.95, 95.91, 95.72 and 95.68 % to the type strains of Sulfitobacter donghicola , Sulfitobacter porphyrae , Sulfitobacter mediterraneus and Roseobacter litoralis , respectively. Strain BS-W13T contained Q-10 as the predominant ubiquinone and C18 : 1ω7c as the major fatty acid. The polar lipid profile of strain BS-W13T, containing phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, one unidentified aminolipid and one unidentified lipid as major components, was distinguishable from those of some phylogenetically related taxa. The DNA G+C content of strain BS-W13T was 58.1 mol%. The phylogenetic data and differential chemotaxonomic and other phenotypic properties revealed that strain BS-W13T constitutes a novel genus and species within family Rhodobacteraceae of the class Alphaproteobacteria , for which the name Pseudoseohaeicola caenipelagi gen. nov., sp. nov. is proposed. The type strain is BS-W13T ( = KCTC 42349T = CECT 8724T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1786-1793 ◽  
Author(s):  
Wallace Rafael Souza ◽  
Rafael Eduardo Silva ◽  
Michael Goodfellow ◽  
Kanungnid Busarakam ◽  
Fernanda Sales Figueiro ◽  
...  

Strain SB026T was isolated from Brazilian rainforest soil and its taxonomic position established using data from a polyphasic study. The organism showed a combination of chemotaxonomic and morphological features consistent with its classification in the genus Amycolatopsis and formed a branch in the Amycolatopsis 16S rRNA gene tree together with Amycolatopsis bullii NRRL B-24847T, Amycolatopsis plumensis NRRL B-24324T, Amycolatopsis tolypomycina DSM 44544T and Amycolatopsis vancoresmycina NRRL B-24208T. It was related most closely to A. bullii NRRL B-24847T (99.0 % 16S rRNA gene sequence similarity), but was distinguished from this strain by a low level of DNA–DNA relatedness (~46 %) and discriminatory phenotypic properties. Based on the combined genotypic and phenotypic data, it is proposed that the isolate should be classified in the genus Amycolatopsis as representing a novel species, Amycolatopsis rhabdoformis sp. nov. The type strain is SB026T ( = CBMAI 1694T = CMAA 1285T = NCIMB 14900T).


Author(s):  
Hisami Kobayashi ◽  
Yasuhiro Tanizawa ◽  
Mitsuo Sakamoto ◽  
Moriya Ohkuma ◽  
Masanori Tohno

The taxonomic status of the species Clostridium methoxybenzovorans was assessed. The 16S rRNA gene sequence, whole-genome sequence and phenotypic characterizations suggested that the type strain deposited in the American Type Culture Collection ( C. methoxybenzovorans ATCC 700855T) is a member of the species Eubacterium callanderi . Hence, C. methoxybenzovorans ATCC 700855T cannot be used as a reference for taxonomic study. The type strain deposited in the German Collection of Microorganism and Cell Cultures GmbH (DSM 12182T) is no longer listed in its online catalogue. Also, both the 16S rRNA gene and the whole-genome sequences of the original strain SR3T showed high sequence identity with those of Lacrimispora indolis (recently reclassified from Clostridium indolis ) as the most closely related species. Analysis of the two genomes showed average nucleotide identity based on blast and digital DNA–DNA hybridization values of 98.3 and 87.9 %, respectively. Based on these results, C. methoxybenzovorans SR3T was considered to be a member of L. indolis .


2011 ◽  
Vol 61 (9) ◽  
pp. 2117-2122 ◽  
Author(s):  
Jintana Kommanee ◽  
Somboon Tanasupawat ◽  
Pattaraporn Yukphan ◽  
Taweesak Malimas ◽  
Yuki Muramatsu ◽  
...  

Three strains, RBY-1T, PHD-1 and PHD-2, were isolated from fruits in Thailand. The strains were Gram-negative, aerobic rods with polar flagella, produced acetic acid from ethanol and did not oxidize acetate or lactate. In phylogenetic trees based on 16S rRNA gene sequences and 16S–23S rRNA gene internal transcribed spacer (ITS) sequences, the strains formed a cluster separate from the type strains of recognized species of the genus Gluconobacter. The calculated 16S rRNA gene sequence and 16S–23S rRNA gene ITS sequence similarities were respectively 97.7–99.7 % and 77.3–98.1 %. DNA G+C contents ranged from 57.2 to 57.6 mol%. The strains showed high DNA–DNA relatedness of 100 % to one another, but low DNA–DNA relatedness of 11–34 % to the tested type strains of recognized Gluconobacter species. Q-10 was the major quinone. On the basis of the genotypic and phenotypic data obtained, the three strains clearly represent a novel species, for which the name Gluconobacter nephelii sp. nov. is proposed. The type strain is RBY-1T ( = BCC 36733T = NBRC 106061T = PCU 318T), whose DNA G+C content is 57.2 mol%.


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 2986-2992 ◽  
Author(s):  
Jae-Chan Lee ◽  
Kyung-Sook Whang

Strains Y-12T and Y-47T were isolated from mountain forest soil and strain WR43T was isolated from rhizosphere soil, at Daejeon, Korea. The three strains grew at 10–55 °C (optimal growth at 28–30 °C), at pH 3.0–8.0 (optimal growth at pH 6.0) and in the presence of 0–4.0  % (w/v) NaCl, growing optimally in the absence of added NaCl. On the basis of 16S rRNA gene sequence analysis, the three strains were found to belong to the genus Burkholderia, showing the closest phylogenetic similarity to Burkholderia diazotrophica JPY461T (97.2–97.7  %); the similarity between the three sequences ranged from 98.3 to 98.7  %. Additionally, the three strains formed a distinct group in phylogenetic trees based on the housekeeping genes recA and gyrB. The predominant ubiquinone was Q-8, the major fatty acids were C16 : 0 and C17 : 0 cyclo and the DNA G+C content of the novel isolates was 61.6–64.4 mol%. DNA–DNA relatedness among the three strains and the type strains of the closest species of the genus Burkholderia was less than 50  %. On the basis of 16S rRNA, recA and gyrB gene sequence similarities, chemotaxonomic and phenotypic data, the three strains represent three novel species within the genus Burkholderia, for which the names Burkholderia humisilvae sp. nov. (type strain Y-12T = KACC 17601T = NBRC 109933T = NCAIM B 02543T), Burkholderia solisilvae sp. nov. (type strain Y-47T = KACC 17602T = NBRC 109934T = NCAIM B 02539T) and Burkholderia rhizosphaerae sp. nov. (type strain WR43T = KACC 17603T = NBRC 109935T = NCAIM B 02541T) are proposed.


2006 ◽  
Vol 56 (6) ◽  
pp. 1257-1261 ◽  
Author(s):  
Liming Wang ◽  
Ying Huang ◽  
Zhiheng Liu ◽  
Michael Goodfellow ◽  
Carlos Rodríguez

The taxonomic position of ten acidophilic actinomycetes isolated from an acidic rice-field soil was established using a polyphasic approach. 16S rRNA gene sequences determined for the isolates were aligned with corresponding sequences of representatives of the genera Kitasatospora, Streptacidiphilus and Streptomyces and phylogenetic trees were inferred using four tree-making algorithms. The isolates had identical sequences and formed a distinct branch at the periphery of the Streptacidiphilus 16S rRNA gene tree. The chemotaxonomic and morphological properties of representative isolates were consistent with their assignment to the genus Streptacidiphilus. The isolates shared nearly identical phenotypic profiles that readily distinguished them from representatives of the established species of Streptacidiphilus. It is evident from the genotypic and phenotypic data that the isolates form a homogeneous group that corresponds to a novel species in the genus Streptacidiphilus. The name proposed for this new taxon is Streptacidiphilus oryzae sp. nov.; the type strain is strain TH49T (=CGMCC 4.2012T=JCM 13271T).


2005 ◽  
Vol 55 (5) ◽  
pp. 1979-1983 ◽  
Author(s):  
Michael Goodfellow ◽  
Luis A. Maldonado ◽  
Erika T. Quintana

A polyphasic study was undertaken to clarify the taxonomic position of Nonomuraea flexuosa DSM 41386T. The distinct 16S rRNA gene sequence phyletic branch formed by this strain was equated with nine related monophyletic clades composed of representatives of the genera classified in the family Streptosporangiaceae. The organism produced a PCR product characteristic of this taxon when examined using a set of oligonucleotide primers specific for members of the family Streptosporangiaceae. Strain DSM 41386T could also be distinguished from representatives of the nine genera assigned to this family using a combination of chemotaxonomic, morphological and physiological properties. It is evident from the genotypic and phenotypic data that strain DSM 41386T is misclassified in the genus Nonomuraea and merits recognition as a monospecific genus within the family Streptosporangiaceae. It is proposed that the name Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. be used for this purpose, with the type strain DSM 41386T (=NRRL B-24348T).


Sign in / Sign up

Export Citation Format

Share Document