scholarly journals Hongiella mannitolivorans gen. nov., sp. nov., Hongiella halophila sp. nov. and Hongiella ornithinivorans sp. nov., isolated from tidal flat sediment

2004 ◽  
Vol 54 (1) ◽  
pp. 157-162 ◽  
Author(s):  
Hana Yi ◽  
Jongsik Chun

Three marine strains of the Cytophaga–Flavobacterium–Bacteroides group, designated JC2050T, JC2051T and JC2052T, were obtained from a single sediment sample of getbol, the Korean tidal flat. Comparative 16S rDNA sequence studies revealed that the test strains were not closely related to any validly published genera and that these strains were only distantly related to the genus Cyclobacterium (88·7–91·2 %). Phylogenetic analyses demonstrated that the three getbol isolates formed a distinct monophyletic clade within the family Cytophagaceae. Physiological, biochemical and chemotaxonomic data also indicated that these three getbol isolates differed significantly from members of other genera and were sufficiently different from each other to be recognized as separate species. On the basis of polyphasic evidence, a new genus, Hongiella gen. nov., is proposed, with three novel species, Hongiella mannitolivorans sp. nov. (type strain JC2050T=IMSNU 14012T=DSM 15301T), Hongiella halophila sp. nov. (type strain JC2051T=IMSNU 14013T=DSM 15292T) and Hongiella ornithinivorans sp. nov. (type strain JC2052T=IMSNU 14014T=DSM 15282T). Hongiella mannitolivorans is the type species of the genus.

2004 ◽  
Vol 54 (2) ◽  
pp. 571-576 ◽  
Author(s):  
Hana Yi ◽  
Kyung Sook Bae ◽  
Jongsik Chun

Two strictly aerobic, halophilic strains of the γ-Proteobacteria, designated JC2042T and JC2043T, were obtained from a sediment sample of getbol, the Korean tidal flat. Comparative 16S rDNA sequence studies revealed that the test strains were related most closely to the type strains of the genera Alteromonas (93·5–95·5 %) and Glaciecola (91·1–93·3 %). Phylogenetic analyses demonstrated that strains JC2042T and JC2043T formed a distinct monophyletic clade within the family Alteromonadaceae and clustered distantly with the genera Alteromonas and Glaciecola. Physiological, biochemical and chemotaxonomic data also indicated that the two getbol isolates were significantly different from members of these two genera and others with validly published names. Cells were rod-shaped and motile with a polar flagellum. The major isoprenoid quinone was Q8. The predominant cellular fatty acids were C16 : 0, C18 : 1 ω7c and a mixture of C16 : 1 ω7c and iso-C15 : 0 2-OH. DNA G+C contents were 48–54 mol%. On the basis of this polyphasic study, Aestuariibacter gen. nov. is proposed with two novel species, Aestuariibacter salexigens sp. nov. (type strain, JC2042T=IMSNU 14006T=KCTC 12042T=DSM 15300T) and Aestuariibacter halophilus sp. nov. (type strain, JC2043T=IMSNU 14007T=KCTC 12043T=DSM 15266T). Aestuariibacter salexigens is the type species of the genus. In addition, an emended description of Alteromonas macleodii is proposed.


2004 ◽  
Vol 54 (2) ◽  
pp. 377-380 ◽  
Author(s):  
Hana Yi ◽  
Kyung Sook Bae ◽  
Jongsik Chun

A Gram-negative, aerobic, halophilic bacterium, designated strain JC2041T, was isolated from a sediment sample of getbol, the Korean tidal flat. Results of 16S rDNA sequence analyses indicated a moderate relationship to Thalassomonas viridans within the γ-Proteobacteria (94·9 % similarity). Depending on the tree-making algorithm used, the isolate either formed a monophyletic clade with T. viridans or was recovered as a sister group of a class containing the genera Thalassomonas and Colwellia. Phenotypic features of the getbol isolate were similar to those of T. viridans, but several physiological and chemotaxonomic properties, including nitrate reduction, amylase, lecithinase, Tweenase and utilization of 13 carbon sources, distinguished strain JC2041T from T. viridans. The polyphasic data presented in this study indicate that the isolate should be classified as a novel species in the genus Thalassomonas. The name Thalassomonas ganghwensis sp. nov. is therefore proposed for the getbol isolate; the type strain is JC2041T (=IMSNU 14005T=KCTC 12041T=DSM 15355T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 268-273 ◽  
Author(s):  
Malka Halpern ◽  
Svetlana Fridman ◽  
Yana Aizenberg-Gershtein ◽  
Ido Izhaki

Pseudomonas flectens Johnson 1956, a plant-pathogenic bacterium on the pods of the French bean, is no longer considered to be a member of the genus Pseudomonas sensu stricto. A polyphasic approach that included examination of phenotypic properties and phylogenetic analyses based on 16S rRNA, rpoB and atpD gene sequences supported the transfer of Pseudomonas flectens Johnson 1956 to a new genus in the family Enterobacteriaceae as Phaseolibacter flectens gen. nov., comb. nov. Two strains of Phaseolibacter flectens were studied (ATCC 12775T and LMG 2186); the strains shared 99.8 % sequence similarity in their 16S rRNA genes and the housekeeping gene sequences were identical. Strains of Phaseolibacter flectens shared 96.6 % or less 16S rRNA gene sequence similarity with members of different genera in the family Enterobacteriaceae and only 84.7 % sequence similarity with Pseudomonas aeruginosa LMG 1242T, demonstrating that they are not related to the genus Pseudomonas . As Phaseolibacter flectens formed an independent phyletic lineage in all of the phylogenetic analyses, it could not be affiliated to any of the recognized genera within the family Enterobacteriaceae and therefore was assigned to a new genus. Cells were Gram-negative, straight rods, motile by means of one or two polar flagella, fermentative, facultative anaerobes, oxidase-negative and catalase-positive. Growth occurred in the presence of 0–60 % sucrose. The DNA G+C content of the type strain was 44.3 mol%. On the basis of phenotypic properties and phylogenetic distinctiveness, Pseudomonas flectens Johnson 1956 is transferred to the novel genus Phaseolibacter gen. nov. as Phaseolibacter flectens gen. nov., comb. nov. The type strain of Phaseolibacter flectens is ATCC 12775T  = CFBP 3281T  = ICMP 745T  = LMG 2187T  = NCPPB 539T.


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3683-3689 ◽  
Author(s):  
Mie Johanne Hansen ◽  
Mira Strøm Braaten ◽  
Anders Miki Bojesen ◽  
Henrik Christensen ◽  
Christian Sonne ◽  
...  

Thirty-three suspected strains of the family Pasteurellaceae isolated from the oral cavity of polar and brown bears were characterized by genotypic and phenotypic tests. Phylogenetic analysis of partial 16S rRNA gene and rpoB sequences showed that the investigated isolates formed two closely related monophyletic groups, representing two novel species of a new genus. Based on 16S rRNA gene sequence comparison Bibersteinia trehalosi was the closest related species with a validly published name, with 95.4 % similarity to the polar bear group and 94.4 % similarity to the brown bear group. Otariodibacter oris was the closest related species based on rpoB sequence comparison with a similarity of 89.8 % with the polar bear group and 90 % with the brown bear group. The new genus could be separated from existing genera of the family Pasteurellaceae by three to ten phenotypic characters, and the two novel species could be separated from each other by two phenotypic characters. It is proposed that the strains should be classified as representatives of a new genus, Ursidibacter gen. nov., with two novel species: the type species Ursidibacter maritimus sp. nov., isolated from polar bears (type strain Pb43106T = CCUG 65144T = DSM 28137T, DNA G+C content 39.3 mol%), and Ursidibacter arcticus sp. nov., isolated from brown bears (type strain Bamse61T = CCUG 65145T = DSM 28138T).


MycoKeys ◽  
2020 ◽  
Vol 74 ◽  
pp. 17-74
Author(s):  
Martina Réblová ◽  
Jana Nekvindová ◽  
Jacques Fournier ◽  
Andrew N. Miller

The Chaetosphaeriaceae are a diverse group of pigmented, predominantly phialidic hyphomycetes comprised of several holomorphic genera including Chaetosphaeria, the most prominent genus of the family. Although the morphology of the teleomorphs of the majority of Chaetosphaeria is rather uniform, their associated anamorphs primarily exhibit the variability and evolutionary change observed in the genus. An exception from the morphological monotony among Chaetosphaeria species is a group characterised by scolecosporous, hyaline to light pink, multiseptate, asymmetrical ascospores and a unique three-layered ascomatal wall. Paragaeumannomyces sphaerocellularis, the type species of the genus, exhibits these morphological traits and is compared with similar Chaetosphaeria with craspedodidymum- and chloridium-like synanamorphs. Morphological comparison and phylogenetic analyses of the combined ITS-28S sequences of 35 isolates and vouchers with these characteristics revealed a strongly-supported, morphologically well-delimited clade in the Chaetosphaeriaceae containing 16 species. The generic name Paragaeumannomyces is applied to this monophyletic clade; eight new combinations and five new species, i.e. P. abietinussp. nov., P. eleganssp. nov., P. granulatussp. nov., P. sabinianussp. nov. and P. smokiensissp. nov., are proposed. A key to Paragaeumannomyces is provided. Using morphology, cultivation studies and phylogenetic analyses of ITS and 28S rDNA, two additional new species from freshwater and terrestrial habitats, Codinaea paniculatasp. nov. and Striatosphaeria castaneasp. nov., are described in the family. A codinaea-like anamorph of S. castanea forms conidia with setulae at each end in axenic culture; this feature expands the known morphology of Striatosphaeria. A chaetosphaeria-like teleomorph is experimentally linked to Dendrophoma cytisporoides, a sporodochial hyphomycete and type species of Dendrophoma, for the first time.


Author(s):  
Yang Liu ◽  
Tao Pei ◽  
Juan Du ◽  
Meijie Chao ◽  
Ming-Rong Deng ◽  
...  

A novel Gram-stain-negative, facultatively anaerobic, rod-shaped and non-motile bacterial strain, designated as 4C16AT, was isolated from a tidal flat sediment and characterized by using a polyphasic taxonomic approach. Strain 4C16AT was found to grow at 10–40 °C (optimum, 28 °C), at pH 5.0–10.0 (optimum, pH 6.0–7.0) and in 0–6 % (w/v) NaCl (optimum, 1 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 4C16AT fell into the genus Roseibium , and shared the highest identity of 98.9 % with the closest type strain Roseibium suaedae KACC 13772T and less than 98.0 % identity with other type strains of recognized species within this genus. The phylogenomic analysis indicated that strain 4C16AT formed an independent branch within this genus. The 28.6 % digital DNA–DNA hybridization estimate and 85.0 % average nucleotide identity between strains 4C16AT and R. suaedae KACC 13772T were the highest, but still far below their respective threshold for species definition, implying that strain 4C16AT should represent a novel genospecies. The predominant cellular fatty acid was summed feature 8; the polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmonomethylethanolamine; the respiratory quinones were Q-9 and Q-10. The genomic DNA G+C content was 59.8mol %. Based on phylogenetic analyses and phenotypic and chemotaxonomic characteristics, strain 4C16AT is concluded to represent a novel species of the genus Roseibium , for which the name Roseibium litorale sp. nov. is proposed. The type strain of the species is 4C16AT (=GDMCC 1.1932T=KACC 22078T). We also propose the reclassification of Labrenzia polysiphoniae as Roseibium polysiphoniae comb. nov. and ‘Labrenzia callyspongiae’ as Roseibium callyspongiae sp. nov.


Author(s):  
Yajun Ge ◽  
Bin Wang ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Gui Zhang ◽  
...  

Four novel strains isolated from the cloacal contents of snow finches (Montifringilla taczanowskii) were characterized as aerobic, Gram-stain-negative, slightly motile, and rod-shaped. Analysis of the 16S rRNA gene sequence revealed that strain CF-458T had the highest similarities of 96.9 and 96.4 % with Limnobaculum parvum HYN0051T and Pragia fontium DSM 5563T, while strain CF-1111T shared the highest similarities of 96.4 and 96.1 % with Pantoea rodasii LMG 26273T and Pectobacterium punjabense SS95T. Phylogenomic analysis showed the four isolates were separated into group Ⅰ (CF-458T and CF-917) and group Ⅱ (CF-1111T and CF-509), and clustered independently in the vicinity of the genera Limnobaculum and Pragia . Summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c, 23.9 and 17.2 %, respectively), C16 : 0 (21.8 and 22.1 %, respectively) and C14 : 0 (10.6 and 17.7 %, respectively) were the common major fatty acids, and summed feature 8 (C18 : 1  ω7c and/or C18 : 1  ω6c, 12.3 %) was also a major fatty acid for strain CF-458T while cyclo-C17 : 0 (13.1%) was for strain CF-1111T. Both had Q-8 as the sole quinone and contained phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol as the major polar lipids. The DNA G+C content of strains CF-458T and CF-1111T was 45.7 and 45.4 mol%, respectively. Based on taxonomic position in the phylogenomic tree and phenotypic properties, two novel species of a new genus within the family Budviciaceae are thus proposed, with the name Jinshanibacter gen. nov., zhutongyuii sp. nov. (type strain CF-458T=CGMCC 1.16483T=GDMCC 1.1586T=JCM 33489T) and Jinshanibacter xujianqingii sp. nov. (type strain CF-1111T=CGMCC 1.16786T=GDMCC 1.1587T=JCM 33490T), respectively.


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2858-2864 ◽  
Author(s):  
Teresa Lucena ◽  
María A. Ruvira ◽  
Esperanza Garay ◽  
M. Carmen Macián ◽  
David R. Arahal ◽  
...  

Strain R46T, a marine alphaproteobacterium, was isolated from Mediterranean seawater at Malvarrosa beach, Valencia, Spain. It is an aerobic chemo-organotrophic, mesophilic and slightly halophilic organism, with complex ionic requirements. Phylogenetic analyses based on the 16S rRNA and gyrB gene sequences showed that strain R46T formed a separate branch within the family Rhodobacteraceae , bearing similarities below 94.7 and 80.3 %, respectively, to any other recognized species. It contained Q10 as the predominant isoprenoid quinone and C18 : 1ω7c/C18 : 1ω6c as the major cellular fatty acid. Phosphatidylglycerol was the only identified polar lipid, although other lipids were also detected. The DNA G+C content of the genomic DNA was 61.3 mol%. On the basis of extensive phenotypic and phylogenetic comparative analysis, it is concluded that the strain represents a novel genus and species, for which the name Actibacterium mucosum gen. nov., sp. nov. is proposed. The type strain of the type species is Actibacterium mucosum R46T ( = CECT 7668T = KCTC 23349T).


2006 ◽  
Vol 56 (3) ◽  
pp. 569-576 ◽  
Author(s):  
Margarita Grabovich ◽  
Ekaterina Gavrish ◽  
Jan Kuever ◽  
Anatoly M. Lysenko ◽  
Daria Podkopaeva ◽  
...  

Five Gram-negative, motile, spiral-shaped strains were isolated from a sulfide spring (D-412T), active sludge of wastewater (D-419T, D-420, D-424) and industrial wastewater (D-416). Comparative 16S rRNA gene sequence analysis showed that the isolates belong to the family Comamonadaceae, within the class Betaproteobacteria, but fall into a distinct cluster. On the basis of phenotypic, chemotaxonomic and phylogenetic data, a new genus, Giesbergeria gen. nov., is proposed, including five species. The type species of the genus is Giesbergeria voronezhensis sp. nov. (type strain D-419T=DSM 12825T=CIP 107340T=VKM B-2350T) and other novel members of the genus are Giesbergeria kuznetsovii sp. nov. (type strain D-412T=DSM 12827T=VKM B-2352T), Giesbergeria giesbergeri comb. nov. (basonym Aquaspirillum giesbergeri), Giesbergeria sinuosa comb. nov. (basonym Aquaspirillum sinuosum) and Giesbergeria anulus comb. nov. (basonym Aquaspirillum anulus). Using the same criteria, isolate D-416 (=DSM 12826) was identified as a strain of [Aquaspirillum] metamorphum. Strain D-416, the type strain of [A.] metamorphum and the type strain of [Aquaspirillum] psychrophilum form a distinct cluster within the family Comamonadaceae (97–97·2 % 16S rRNA gene sequence similarity) and share phenotypic and chemotaxonomic properties. Therefore, it is proposed that these strains are reclassified as members of a new genus, Simplicispira gen. nov., as Simplicispira metamorpha comb. nov. (the type species) and Simplicispira psychrophila comb. nov., respectively.


2007 ◽  
Vol 57 (12) ◽  
pp. 2758-2761 ◽  
Author(s):  
D. P. Labeda ◽  
R. M. Kroppenstedt

In the course of phylogenetic analyses of the taxa within the suborder Pseudonocardineae, it was observed that Saccharothrix tangerinus MK27-91F2T was misplaced in the genus Saccharothrix. After a detailed examination of nucleotide signatures in the 16S rRNA gene sequence along with the morphological and chemotaxonomic characteristics of this strain, which are different from those of all species of Saccharothrix as well as the other genera within the suborder, it was concluded that this strain represents a new genus, for which the name Umezawaea gen. nov. is proposed. Pseudosporangia are produced on the aerial mycelium, the whole-cell sugar pattern consists of galactose, mannose and ribose, phosphatidylethanolamine, phosphatidylinositol and lyso-phosphatidylethanolamine are the predominant phospholipids and MK-9(H4) is the predominant menaquinone. The type species of the proposed new genus is Umezawaea tangerina gen. nov., comb. nov., with the type strain MK27-91F2T (=NRRL B-24463T =DSM 44720T =FERM P-16053T =JCM 10302T =NBRC 16184T).


Sign in / Sign up

Export Citation Format

Share Document