scholarly journals Saccharothrix hoggarensis sp. nov., an actinomycete isolated from Saharan soil

2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 549-553 ◽  
Author(s):  
Dalila Boubetra ◽  
Abdelghani Zitouni ◽  
Noureddine Bouras ◽  
Florence Mathieu ◽  
Ahmed Lebrihi ◽  
...  

An actinomycete, designated SA181T, was isolated from Saharan soil in the Hoggar region (south Algeria) and was characterized taxonomically by using a polyphasic approach. The morphological and chemotaxonomic characteristics of the isolate were consistent with the genus Saccharothrix , and 16S rRNA gene sequence analysis confirmed that strain SA181T was a novel member of the genus Saccharothrix . DNA–DNA hybridization values between strain SA181T and its closest phylogenetic neighbours, the type strains of Saccharothrix longispora , Saccharothrix texasensis and Saccharothrix xinjiangensis , were clearly below the 70 % threshold. The genotypic and phenotypic data showed that the isolate represents a novel species of the genus Saccharothrix , for which the name Saccharothrix hoggarensis sp. nov. is proposed, with the type strain SA181T ( = DSM 45457T  = CCUG 60214T).

2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1121-1127 ◽  
Author(s):  
An Coorevits ◽  
Anna E. Dinsdale ◽  
Jeroen Heyrman ◽  
Peter Schumann ◽  
Anita Van Landschoot ◽  
...  

‘Bacillus macroides’ ATCC 12905T ( = DSM 54T = LMG 18474T), isolated in 1947 from cow dung, was not included in the Approved Lists of Bacterial Names and so it lost standing in bacteriological nomenclature. Reinvestigation of the strain, including DNA–DNA relatedness experiments, revealed that ‘Bacillus macroides’ is genomically distinct from its closest relatives Lysinibacillus xylanilyticus , Lysinibacillus boronitolerans and Lysinibacillus fusiformis (as determined by 16S rRNA gene sequence analysis, with pairwise similarity values of 99.2, 98.8 and 98.5 %, respectively, with the type strains of these species). Further analysis showed that ‘Bacillus macroides’ shares the A4α l-Lys–d-Asp peptidoglycan type with other members of the genus Lysinibacillus and can thus be attributed to this genus. These results, combined with additional phenotypic data, justify the description of strain LMG 18474T ( = DSM 54T = ATCC 12905T) as Lysinibacillus macroides sp. nov., nom. rev.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2661-2665 ◽  
Author(s):  
Lang Zhu ◽  
Qing Liu ◽  
Hongcan Liu ◽  
Yuguang Zhou ◽  
Yuhua Xin ◽  
...  

An aerobic, asporous, flagellated, Gram-stain-positive, rod-shaped bacterium MD-T1-10-2T was isolated from the topsoil of Midui Glacier, Tibet Province, China. Phylogenetic analysis based on 16S rRNA gene sequence analysis placed the strain in a clade containing Mycetocola manganoxydans CCTCC AB 209002T, Mycetocola reblochoni DSM 18580T, Mycetocola tolaasinivorans JCM 11656T, Mycetocola lacteus JCM 11654T and Mycetocola saprophilus JCM 11655T, with the sequence similarities of 99.2, 98.1, 96.7, 96.6 and 96.4 %, respectively. DNA–DNA hybridization analysis indicated that strain MD-T1-10-2T represented a new member of this genus. The optimal ranges of temperature and pH for growth were 20–25 °C and 7.0–9.0, respectively; the strain could even grow at 0 °C. The major cellular fatty acids were anteiso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. The predominant menaquinones were MK-10 and MK-11. The cell wall amino acids were lysine, alanine, glycine and glutamic acids. The DNA G+C content was 65.9 mol%. Based on the genotypic and phenotypic data, strain MD-T1-10-2T for which the name Mycetocola miduiensis sp. nov. is proposed; the type strain is MD-T1-10-2T ( = CGMCC 1.11101T = NBRC 107877T).


2019 ◽  
Vol 69 (4) ◽  
pp. 1016-1023 ◽  
Author(s):  
Xiang-yue Zhou ◽  
Zeng-hong Gao ◽  
Mei-hong Chen ◽  
Mei-qi Jian ◽  
Li-hong Qiu

Cells of bacterial strains 4 G-K06T and 4MSK11T, isolated from soil samples collected from monsoon evergreen broad-leaved forest of the Dinghushan Mountain (112° 31′ E 23° 10′ N), Guangdong Province, PR China, were Gram-stain-negative, aerobic, non-spore-forming, non-motile and rod-shaped. Strain 4 G-K06T grew at 10–37 °C, pH 3.5–7.5 and 0–3.5 % (w/v) NaCl; while 4MSK11T grew at 4–42 °C, pH 3.5–7.5 and 0–2.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed strain 4 G-K06T formed a clade with Dyella flagellata 4 M-K16T, Dyella acidisoli 4M-Z03T, Dyella humi DHG40T and Dyella nitratireducens DHG59T, while strain 4MSK11T formed a clade with Dyella caseinilytica DHOB09T and Dyella mobilis DHON07T, both within the genus Dyella . The result of the partial atpD, gyrB and lepA gene sequence analysis supported the conclusion based on 16S rRNA gene sequence analysis, which showed that these two strains represent two novel species of Dyella . The average nucleotide identity and digital DNA–DNA hybridization value for the whole genomes were 75.0–79.0 and 20.3–22.6 % between strains 4 G-K06T, 4MSK11T and those described Dyella species with genome sequences; while the DNA–DNA hybridization rates between strains 4 G-K06T, 4MSK11T and closely related Dyella species (without genome sequence) were 29.5–41.8 %. The major cellular fatty acids of these two strains were iso-C15 : 0, iso-C16 : 0 and iso-C17 : 1 ω9c, while the major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several unidentified phospholipids and aminophospholipids. The only ubiquinone of these two strains was ubiquinone-8. The DNA G+C contents of 4 G-K06T and 4MSK11T were 60.4 and 61.3 mol%, respectively. On the basis of the evidence presented here, strains 4 G-K06T and 4MSK11T represent two novel species of the genus Dyella , for which the names Dyella monticola sp. nov. (type strain 4 G-K06T=LMG 30268T=GDMCC 1.1188T) and Dyella psychrodurans sp. nov. (type strain 4MSK11T=KCTC 62280T=GDMCC 1.1185T) are proposed.


Author(s):  
Angéline Antezack ◽  
Manon Boxberger ◽  
Mariem Ben Khedher ◽  
Bernard La Scola ◽  
Virginie Monnet-Corti

A Gram-stain-negative bacterium, designated strain Marseille-Q3039T, was isolated from subgingival dental plaque of a woman with gingivitis in Marseille, France. Strain Marseille-Q3039T was found to be an anaerobic, motile and spore-forming crescent-shaped bacterium that grew at 25–41.5 °C (optimum, 37 °C), pH 5.5–8.5 (optimum, pH 7.5) and salinity of 5.0 g l−1 NaCl. The results of 16S rRNA gene sequence analysis revealed that strain Marseille-Q3039T was closely related to Selenomonas infelix ATCC 43532T (98.42 % similarity), Selenomonas dianae ATCC 43527T (97.25 %) and Centipedia periodontii DSM 2778T (97.19 %). The orthologous average nucleotide identity and digital DNA–DNA hybridization relatedness between strain Q3039T and its closest phylogenetic neighbours were respectively 84.57 and 28.2 % for S. infelix ATCC 43532T and 83.93 and 27.2 % for C. periodontii DSM 2778T. The major fatty acids were identified as C13 : 0 (27.7 %), C15 : 0 (24.4 %) and specific C13 : 0 3-OH (12.3 %). Genome sequencing revealed a genome size of 2 351 779 bp and a G+C content of 57.2 mol%. On the basis of the results from phenotypic, chemotaxonomic, genomic and phylogenetic analyses and data, we concluded that strain Marseille-Q3039T represents a novel species of the genus Selenomonas , for which the name Selenomonas timonae sp. nov. is proposed (=CSUR Q3039=CECT 30128).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 1083-1085 ◽  
Author(s):  
Sunhee Hong ◽  
Christine E. Farrance ◽  
Anne Russell ◽  
Hana Yi

Two species of the genus Deinococcus , namely Deinococcus wulumuqiensis Wang et al. 2010 and Deinococcus xibeiensis Wang et al. 2010, were simultaneously proposed and described in the same publication. However, the identical 16S rRNA gene sequence of the two type strains strongly raised the probability of their relatedness at the species level. Thus, the genomic relatedness of the two species of the genus Deinococcus was investigated here to clarify their taxonomic status. The high (99.9 %) average nucleotide identity (ANI) between the genome sequences of the two type strains suggested that the two species are synonymous. Additional phenotypic data including enzymic activities and substrate-utilization profiles showed no pronounced differences between the type strains of the two species. Data from this study demonstrated that the two taxa constitute a single species. According to Rule 42 of the Bacteriological Code, we propose that D. xibeiensis Wang et al. 2010 should be reclassified as a subjective heterotypic synonym of D. wulumuqiensis Wang et al. 2010.


2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3568-3573 ◽  
Author(s):  
Hongliang Liu ◽  
Yumei Song ◽  
Fang Chen ◽  
Shixue Zheng ◽  
Gejiao Wang

A Gram-stain-positive, aerobic, motile, rod-shaped bacterium, designated strain Mn1-7T, was isolated from manganese mining soil in Tianjin, China. The closest phylogenetic relatives were Lysinibacillus massiliensis CCUG 49529T (97.2 % 16S rRNA gene sequence similarity), L. xylanilyticus XDB9T (96.7 %), L. sinduriensis JCM 15800T (96.2 %), L. odysseyi NBRC 100172T (95.9 %) and L. boronitolerans NBRC 103108T (95.4 %) (the type species of the genus). DNA–DNA hybridization values for strain Mn1-7T with the type strains of L. massiliensis and L. sinduriensis were 24.9 and 27.7 %, respectively. The genomic DNA G+C content was 38.4 mol%. The major menaquinone was MK-7 and the major fatty acids were iso-C15 : 0, iso-C16 : 0 and iso-C14 : 0. The major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The cell-wall peptidoglycan was type A4α (l-Lys–d-Asp), and the predominant cell-wall sugar was xylose. DNA–DNA hybridization results and comparison of phenotypic and chemotaxonomic characters between strain Mn1-7T and the phylogenetically most closely related strains revealed that the isolate represents a novel species of the genus Lysinibacillus , for which the name Lysinibacillus manganicus sp. nov. is proposed. The type strain is Mn1-7T ( = DSM 26584T = CCTCC AB 2012916T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5806-5811 ◽  
Author(s):  
Jan W. Schwitalla ◽  
René Benndorf ◽  
Karin Martin ◽  
John Vollmers ◽  
Anne-Kristin Kaster ◽  
...  

The taxonomic position of a novel aerobic, Gram-positive actinobacteria, designated strain RB5T, was determined using a polyphasic approach. The strain, isolated from the gut of the fungus-farming termite Macrotermes natalensis, showed morphological, physiological and chemotaxonomic properties typical of the genus Streptomyces . Based on 16S rRNA gene sequence analysis, the closest phylogenetic neighbour of RB5T was Streptomyces polyrhachis DSM 42102T (98.87 %). DNA–DNA hybridization experiments between strain RB5T and S. polyrhachis DSM 42102T resulted in a value of 27.4 % (26.8 %). The cell wall of strain RB5T contained ll-diaminopimelic acid as the diagnostic amino acid. Mycolic acids and diagnostic sugars in whole-cell hydrolysates were not detected. The strain produced the following major phospholipids: diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol-mannoside and phosphatidylserine. The menaquinone profile showed hexa- and octahydrogenated menaquinones containing nine isoprene units [MK-9(H6) and MK-9(H8)]. The strain exhibited a fatty acid profile containing the following major fatty acids: 12-methyltridecanoic acid (iso-C14 : 0) 12-methyltetradecanoic acid (anteiso-C15 : 0), 13-methyltetradecanoic acid (iso-C15 : 0) and 14-methylpentadecanoic acid (iso-C16 : 0). Here, we propose a novel species of the genus Streptomyces – Streptomyces smaragdinus with the type strain RB5T (=VKM Ac-2839T=NRRL B65539T).


2013 ◽  
Vol 63 (Pt_11) ◽  
pp. 4158-4162 ◽  
Author(s):  
Xiao-Mei Fang ◽  
Jing Su ◽  
Hao Wang ◽  
Yu-Zhen Wei ◽  
Tao Zhang ◽  
...  

Two actinobacterial strains, CPCC 203464T and CPCC 203448, isolated from surface-sterilized stems of medicinal plants were subjected to a polyphasic taxonomic study. These two aerobic organisms formed pale yellow colonies on tryptic soy agar (TSA). Cells were Gram-stain-positive, non-acid-fast, non-motile, rod- or coccoid-like elements. Comparative 16S rRNA gene sequence analysis indicated that strains CPCC 203464T and CPCC 203448 were most closely related to the type strains of the species of the genus Williamsia . Chemotaxonomic properties such as containing meso-diaminopimelic acid in the cell wall, arabinose, galactose and ribose being the whole-cell hydrolysate sugars, phosphatidylethanolamine (PE), diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylinositol (PI) as the phospholipids, and C16 : 0, 10-methyl C18 : 0, C18 : 1ω9c, C16 : 1ω7c and/or iso-C15 : 0 2-OH as major fatty acids supported the affiliation of strains CPCC 203464T and CPCC 203448 to the genus Williamsia . The DNA–DNA hybridization values in combination with differentiating chemotaxonomic and physiological characteristics strongly suggested that these two isolates should be classified as representatives of a novel species of the genus Williamsia . The name Williamsia sterculiae sp. nov. is proposed, with strain CPCC 203464T ( = DSM 45741T = KCTC 29118T) as the type strain.


2014 ◽  
Vol 64 (Pt_9) ◽  
pp. 3134-3139 ◽  
Author(s):  
Jung-Hye Choi ◽  
Kyung Min Lee ◽  
Myung-Ki Lee ◽  
Chang-Jun Cha ◽  
Geun-Bae Kim

A novel strain, designated strain CU3-7T, was isolated from faeces of a two-week-old baby. The isolate was Gram-staining-positive, anaerobic and rod-shaped. Results from 16S rRNA gene sequence analysis revealed that strain CU3-7T was phylogenetically affiliated with members of the genus Bifidobacterium . Strain CU3-7T showed the highest level of sequence similarity with Bifidobacterium adolescentis KCTC 3216T (98.4 %), followed by Bifidobacterium ruminantium KCTC 3425T (97.9 %). Analysis of hsp60 sequences showed that strain CU3-7T was closely related to B. adolescentis KCTC 3216T (94.0 %) and B. ruminantium KCTC 3425T (92.5 %). The DNA–DNA hybridization values with the closely related strains were all below the cut-off value for species delineation, 17.0 % with B. ruminantium KCTC 3425T and 14.9 % with B. adolescentis KCTC 3216T. Fructose-6-phosphate phosphoketolase activity was detected. The predominant cellular fatty acids were C16 : 0 (27.7 %), C18 : 1ω9c (27.4 %) and C18 : 1ω9c dimethylacetate (15.5 %). The DNA G+C content was 58.6 mol%. On the basis of polyphasic taxonomy, strain CU3-7T should be classified as the type strain of a novel species within the genus Bifidobacterium , for which the name Bifidobacterium faecale sp. nov. is proposed ( = KACC 17904T = JCM 19861T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1056-1061 ◽  
Author(s):  
Ifeoma Ezeoke ◽  
Hans-Peter Klenk ◽  
Gabriele Pötter ◽  
Peter Schumann ◽  
Ben D. Moser ◽  
...  

Five nocardioform isolates from human clinical sources were evaluated. Analysis of the nearly full-length 16S rRNA gene showed 99.9–100 % similarity among the strains. The results of a comparative phylogenetic analysis of the 16S rRNA gene sequences indicated that the isolates belonged to the genus Nocardia . Phenotypic and molecular analyses were performed on the clinical isolates. Traditional phenotypic analyses included morphological, biochemical/physiological, chemotaxonomic and antimicrobial susceptibility profiling. Molecular studies included 1441-bp 16S rRNA and 1246-bp gyrB gene sequence analyses, as well as DNA–DNA hybridizations. Biochemical analysis failed to differentiate the putative novel species from its phylogenetic neighbours; however, molecular studies were able to distinguish the patient strains and confirm them as members of a single species. Based on 16S rRNA gene sequence analysis, similarity between the isolates and their closest relatives (type strains of Nocardia araoensis , N. arthritidis , N. beijingensis and N. niwae ) was ≤99.3 %. Analysis of partial gyrB gene sequences showed 98–99.7 % relatedness among the isolates. Nocardia lijiangensis and N. xishanensis were the closest related species to the isolates based on gyrB gene sequence analysis, and their type strains showed 95.7 and 95.3 % similarity, respectively, to strain W9988T. Resistance to amikacin and molecular analyses, including DNA–DNA hybridization, distinguished the five patient strains from their phylogenetic neighbours, and the results of this polyphasic study indicated the existence of a novel species of Nocardia , for which we propose the name Nocardia amikacinitolerans sp. nov., with strain W9988T ( = DSM 45539T  = CCUG 59655T) as the type strain.


Sign in / Sign up

Export Citation Format

Share Document