Kwoniella shandongensis sp. nov., a basidiomycetous yeast isolated from soil and bark from an apple orchard

2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2774-2777 ◽  
Author(s):  
Ru Chen ◽  
Yuan-Mao Jiang ◽  
Shao-Chong Wei ◽  
Qi-Ming Wang

Four basidiomycetous yeast strains (Y13-1T, Y2-1, Y6-3 and Y8-2) were isolated from soil and bark collected from an apple orchard in Tai’an, Shandong province, PR China. Phylogenetic analysis based on 26S rRNA gene D1/D2 domains and ITS regions revealed that these novel strains were located in the Kwoniella clade in the class Tremellomycetes and were closely related to Cryptococcus cuniculi and Kwoniella heveanensis, but were clearly distinct from these species. Therefore, it is proposed that the new strains represent a novel species, Kwoniella shandongensis sp. nov., with the type strain Y13-1T( = CGMCC 2.04458T = CBS 12478T). The MycoBank number for the novel species is MB 564868.

2011 ◽  
Vol 61 (10) ◽  
pp. 2538-2542 ◽  
Author(s):  
Pushpa Gujjari ◽  
Sung-Oui Suh ◽  
Ching-Fu Lee ◽  
Jianlong J. Zhou

Four arthroconidium-producing yeasts were isolated from the gut of wood-inhabiting tenebrionid and passalid beetles. The rRNA genes of these yeast strains were sequenced, compared and analysed. The sequence results and other taxonomic characterizations placed two of the strains into Trichosporon porosum, and the remaining strains, EH024T and EH026 which were isolated from Xylopinus saperdioides (Coleoptera: Tenebrionidae), into a novel species of the genus Trichosporon in the Porosum clade. Strain EN6S23 was independently isolated from forest soil in Taiwan and was identified as the same novel species based on identical sequences in the internal transcribed spacers (ITS) and the D1/D2 region of the LSU rRNA gene and similar physiological characteristics to those of strains EH024T and EH026. The three strains can assimilate cellulose and xylan as sole carbon source, and are clearly distinguished from their closest taxon, T. porosum, by 14 nt differences in the ITS and D1/D2 region. These strains did not reproduce sexually under the laboratory conditions tested. The novel species is proposed as Trichosporon xylopini sp. nov. (type strain EH024T  = ATCC MYA-4670T  = CBS 11841T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3576-3579 ◽  
Author(s):  
Labia Irène I. Ouoba ◽  
Dennis S. Nielsen ◽  
Amarachukwu Anyogu ◽  
Christine Kando ◽  
Bréhima Diawara ◽  
...  

Investigation of the microbial diversity of Bandji, a traditional palm wine from Burkina Faso (West Africa) revealed the presence of two yeast isolates (YAV16 and YAV17T) with unusual phenotypic and genotypic characteristics. The isolates divide by bipolar budding with no production of ascospores. Phylogenetic analysis of concatenated sequences of the 26S rRNA gene D1/D2 and internal transcribed spacer (ITS) regions indicated that the novel species was most closely related to Kloeckera lindneri and Hanseniaspora valbyensis. The new isolates differed from K. lindneri NRRL Y-17531T and H. valbyensis CBS 479T by substitutions in the D1/D2 region of 12 and 16 nt respectively. The divergence in the ITS region from the closely related species was characterized by substitutions of 45–46 nt. Repetitive palindromic PCR (rep-PCR) profiles of YAV16 and YAV17T were also significantly different from those of K. lindneri MUCL 31146T ( = NRRL Y-17531T), H. valbyensis NCYC 17T ( = CBS 479T) and other species of the genus Hanseniaspora. Based on the results of the phenotypic and genotypic characterizations, it was concluded that the new isolates represent a novel species for which the name Hanseniaspora jakobsenii sp. nov. is proposed with YAV17T ( = CBS 12942T = DSM 26339T = NCYC 3828T; MycoBank number MB 805785) as the type strain.


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1715-1720 ◽  
Author(s):  
Stephanie A. Vogelmann ◽  
Sandra Chaves ◽  
Christian Hertel

A novel anamorphic yeast, strain LTH 6662T, was isolated from cassava sourdough. The isolate supposedly originated from cassava flour or was a contaminant thereof. Sequencing of the D1/D2 domain of the 26S rRNA gene indicated that strain LTH 6662T represents a novel species. Its closest relatives were members of the Cryptococcus humicola complex. The novel strain had several physiological characteristics that differed from those of related species: the ability to assimilate raffinose and cadaverine; the inability to assimilate soluble starch, xylitol, galactitol, butane-2,3-diol, sodium nitrite and lysine; the ability to grow without vitamins and at 42 °C; and the inability to produce starch-like substances. Its major ubiquinone was Q-10. In addition, buds were formed on small neck-like structures. In liquid medium, green or blue fluorescent substances were produced. The name Cryptococcus thermophilus sp. nov. is proposed, with LTH 6662T ( = DSM 19443T = CBS 10687T) as the type strain.


2011 ◽  
Vol 61 (12) ◽  
pp. 3084-3088 ◽  
Author(s):  
Sandra Torriani ◽  
Marilinda Lorenzini ◽  
Elisa Salvetti ◽  
Giovanna E. Felis

Yeast strains were isolated from Vin Santo of Gambellara, a sweet white wine with the specificity of Controlled Designation of Origin produced from off-vine overripened grapes in the Veneto region (Italy). Comparative sequence analysis of the 26S rRNA gene revealed that three representative strains (ZO03-5T, CA06-8 and ME06-9) constitute a taxon related to, but distinct from, Zygosaccharomyces machadoi. Similarity between the 26S rRNA gene domain D1/D2 sequence of the three isolates and Z. machadoi was 97.9 %; moreover, the morphological characteristics and the physiological behaviour also supported recognition of a novel taxon of osmophilic non-psychrophilic yeast showing a flower-like arrangement of budding cells that remain attached to each other. The name Zygosaccharomyces gambellarensis is proposed for the novel species, with ZO03-5T ( = CBS 12191T = MUCL 53393T) as the type strain.


2010 ◽  
Vol 60 (6) ◽  
pp. 1466-1472 ◽  
Author(s):  
Laurie B. Connell ◽  
Regina Redman ◽  
Russel Rodriguez ◽  
Anne Barrett ◽  
Melissa Iszard ◽  
...  

During a survey of the culturable soil fungal population in samples collected in Taylor Valley, South Victoria Land, Antarctica, 13 basidiomycetous yeast strains with orange-coloured colonies were isolated. Phylogenetic analyses of internal transcribed spacer (ITS) and partial LSU rRNA gene sequences showed that the strains belong to the Dioszegia clade of the Tremellales (Tremellomycetes, Agaricomycotina), but did not correspond to any of the hitherto recognized species. Two novel species, Dioszegia antarctica sp. nov. (type strain ANT-03-116T =CBS 10920T =PYCC 5970T) and Dioszegia cryoxerica sp. nov. (type strain ANT-03-071T =CBS 10919T =PYCC 5967T), are described to accommodate ten and three of these strains, respectively. Analysis of ITS sequences demonstrated intrastrain sequence heterogeneity in D. cryoxerica. The latter species is also notable for producing true hyphae with clamp connections and haustoria. However, no sexual structures were observed. The two novel species can be considered obligate psychrophiles, since they failed to grow above 20 °C and grew best between 10 and 15 °C.


2011 ◽  
Vol 61 (7) ◽  
pp. 1606-1611 ◽  
Author(s):  
Enrico Tortoli ◽  
Erik C. Böttger ◽  
Anna Fabio ◽  
Enevold Falsen ◽  
Zoe Gitti ◽  
...  

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T ( = DSM 45397T  = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.


2006 ◽  
Vol 56 (5) ◽  
pp. 1153-1156 ◽  
Author(s):  
Zuo-Wei Wu ◽  
Feng-Yan Bai

Three anamorphic, ascomycetous yeast strains isolated from plant samples collected in Linzhi District, Tibet, China, were revealed as representing two novel species by 26S rRNA gene D1/D2 domain sequence and physiological property comparisons. The names Candida tibetensis sp. nov. and Candida linzhiensis sp. nov. are proposed for these novel species, with XZ 41-6T (=AS 2.3072T=CBS 10298T) and XZ 92-1T (=AS 2.3073T=CBS 10299T) as the respective type strains. D1/D2 sequence analysis showed that C. tibetensis and C. linzhiensis are closely related to Candida caryicola and Candida sequanensis, respectively.


2010 ◽  
Vol 60 (1) ◽  
pp. 244-248 ◽  
Author(s):  
Melissa Fontes Landell ◽  
Raisa Billodre ◽  
Jesus P. Ramos ◽  
Orílio Leoncini ◽  
Marilene H. Vainstein ◽  
...  

Two novel yeast species, Candida aechmeae sp. nov. and Candida vrieseae sp. nov., were isolated from bromeliads in Itapuã Park, Rio Grande do Sul, Brazil. These species are genetically isolated from all other currently recognized ascomycetous yeasts based on their sequence divergence in the D1/D2 domain of the LSU rRNA gene. C. aechmeae sp. nov. is phylogenetically close to Candida ubatubensis, a species also isolated from bromeliads in Brazil, but the novel species can be differentiated on the basis of differences in the D1/D2 domain and positive results for the assimilation of l-arabinose, raffinose, inulin and citrate. Candida vrieseae sp. nov. is phylogenetically placed in a clade near Candida membranifaciens that is composed of several species associated with insects, but the novel species can be differentiated from them by the D1/D2 and ITS gene sequences, positive results for the assimilation of nitrite and a negative result for the assimilation of ethylamine. The type strain for Candida aechmeae sp. nov. is BI153T (=CBS 10831T=NRRL Y-48456T) and the type strain for C. vrieseae sp. nov. is BI146T (=CBS 10829T=NRRL Y-48461T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1855-1859 ◽  
Author(s):  
Ana Raquel O. Santos ◽  
Elisa S. Faria ◽  
Marc-André Lachance ◽  
Carlos A. Rosa

Five strains of a novel methanol-assimilating yeast species were isolated from mango (Mangifera indica) leaves collected at the campus of the Federal University of Minas Gerais in Brazil. The sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the large subunit of the rRNA gene showed that this species belongs to the Ogataea clade and is related to O. allantospora, O. chonburiensis, O. dorogensis, O. kodamae, O. paradorogensis and Candida xyloterini (Ogataea clade). The novel species differs in the D1/D2 domains of the large subunit of the rRNA gene by 12 to 40 substitutions from these Ogataea species. The name Ogataea mangiferae sp. nov. is proposed for this novel species. The type strain of Ogataea mangiferae sp. nov. is UFMG-CM-Y253T ( = CBS 13492T). The Mycobank number is MB 811646.


2011 ◽  
Vol 61 (4) ◽  
pp. 709-715 ◽  
Author(s):  
Seong Chan Park ◽  
Keun Sik Baik ◽  
Han Na Choe ◽  
Chae Hong Lim ◽  
Ho Jun Kim ◽  
...  

Two non-motile, orange- or yellow-pigmented bacteria, designated strains KYW48T and KYW147T, were isolated from seawater collected from the South Sea, Republic of Korea. Cells of both strains were Gram-reaction-negative, aerobic and catalase- and oxidase-positive. The major fatty acids of strain KYW48T were C18 : 1ω7c (35.3 %), summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) (22.7 %), C17 : 1ω6c (19.8 %), C14 : 0 2-OH (7.4 %) and C16 : 0 (5.9 %), and those of strain KYW147T were C18 : 1ω7c (36.0 %), summed feature 3 (18.3 %), C16 : 0 (14.7 %), 11-methyl C18 : 1ω7c (10.7 %), C16 : 0 2-OH (9.1 %) and C18 : 1ω9c (8.0 %). The predominant isoprenoid quinone of both strains was ubiquinone 10 (Q-10). The DNA G+C contents of strains KYW48T and KYW147T were 63.8 and 67.2 mol%, respectively. A phylogenetic tree based on 16S rRNA gene sequences showed that strains KYW48T and KYW147T were grouped with the members of the family Erythrobacteraceae and formed a distinct clade with the members of the genus Altererythrobacter (<95.7 % sequence similarity). On the basis of the evidence presented in this study, the novel species Altererythrobacter namhicola sp. nov. (type strain KYW48T  = KCTC 22736T  = JCM 16345T) and Altererythrobacter aestuarii sp. nov. (type strain KYW147T  = KCTC 22735T  = JCM 16339T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document