Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil

2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 667-672 ◽  
Author(s):  
Neha Niharika ◽  
Hana Moskalikova ◽  
Jasvinder Kaur ◽  
Miroslava Sedlackova ◽  
Ales Hampl ◽  
...  

A yellow-pigmented bacterial strain, designated LL02T, was isolated from hexachlorocyclohexane-contaminated soil from Spolana Neratovice, a former Czech producer of lindane. A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LL02T occupied a distinct phylogenetic position in the genus Novosphingobium and showed the highest sequence similarity with Novosphingobium resinovorum NCIMB 8767T (98.59 %). DNA–DNA relatedness between strain LL02T and its closest phylogenetic neighbours was <70 %, which indicated that strain LL02T represented a novel species of the genus Novosphingobium . The DNA G+C content of strain LL02T was 67.72±0 mol%. The major respiratory quinone was ubiquinone Q-10. The polar lipid profile of the isolate corresponded to those reported for other members of the genus Novosphingobium (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmonomethylethanolamine and sphingoglycolipids), thus supporting its classification in the genus. Spermidine was the major polyamine. The major fatty acids were summed feature 3 (consisting of C16 : 1ω7c and/or C16 : 1ω6c; 40.13 %), summed feature 8 (consisting of C18 : 1ω7c and/or C18 : 1ω6c; 31.09 %) and C14 : 0 2-OH (23.16 %). The results obtained from DNA–DNA hybridization and biochemical and physiological tests clearly distinguished the isolate from its closest phylogenetic neighbours. Thus, strain LL02T represents a novel species of the genus Novosphingobium , for which the name Novosphingobium barchaimii sp. nov. is proposed. The type strain is LL02T ( = CCM 7980T  = DSM 25411T).

2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2997-3002 ◽  
Author(s):  
Neha Niharika ◽  
Swati Jindal ◽  
Jasvinder Kaur ◽  
Rup Lal

A bacterial strain, designated Dd16T, was isolated from a hexachlorocyclohexane (HCH) dumpsite at Lucknow, India. Cells of strain Dd16T were Gram-stain-negative, non-motile, rod-shaped and yellow-pigmented. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Sphingomonas in the family Sphingomonadaceae , as it showed highest sequence similarity to Sphingomonas asaccharolytica IFO 15499T (95.36 %), Sphingosinicella vermicomposti YC7378T (95.30), ‘Sphingomonas humi’ PB323 (95.20 %), Sphingomonas sanxanigenens NX02T (95.14 %) and Sphingomonas desiccabilis CP1DT (95.00 %). The major fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) C14 : 0 2-OH, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The polar lipid profile of strain Dd16T also corresponded to those reported for species of the genus Sphingomonas (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, and a sphingoglycolipid), again supporting its identification as a member of the genus Sphingomonas . The predominant respiratory quinone was ubiquinone Q10, and sym-homospermidine was the major polyamine observed. The total DNA G+C content of strain Dd16T was 65.8 mol%. The results obtained on the basis of phenotypic characteristics and phylogenetic analysis and after biochemical and physiological tests, clearly distinguished strain Dd16T from closely related members of the genus Sphingomonas . Thus, strain Dd16T represents a novel species of the genus Sphingomonas for which the name Sphingomonas indica sp. nov. is proposed. The type strain is Dd16T ( = DSM 25434T = CCM 7882T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 254-259 ◽  
Author(s):  
Amit Kumar Singh ◽  
Nidhi Garg ◽  
Pushp Lata ◽  
Roshan Kumar ◽  
Vivek Negi ◽  
...  

An orange-pigmented bacterial strain, designated LP100T, was isolated from hexachlorocyclohexane-contaminated soil (Lucknow, India). A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LP100T occupied a distinct phylogenetic position in the Pontibacter species cluster, showing highest similarity with Pontibacter lucknowensis DM9T (97.4 %). Levels of similarity to strains of other Pontibacter species ranged between 94.0 and 96.8 %. Strain LP100T contained MK-7 as the predominant menaquinone and sym-homospermidine was the major polyamine in the cell. The major cellular fatty acids of strain LP100T were anteiso-C17 : 0 A, iso-C15 : 0 and iso-C18 : 1 H. The polar lipid profile of strain LP100T showed the presence of phosphatidylethanolamine, an unidentified aminophospholipid, three unknown aminolipids and two unknown polar lipids. The G+C content of strain LP100T was 58.2 mol%. The results of DNA–DNA hybridization, biochemical and physiological tests clearly distinguish the novel strain from closely related species of the genus Pontibacter . Therefore, strain LP100T represents a novel species of the genus Pontibacter for which the name Pontibacter indicus is proposed. The type strain is LP100T ( = CCM8435T = MCC2027T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 673-678 ◽  
Author(s):  
Jasvinder Kaur ◽  
Hana Moskalikova ◽  
Neha Niharika ◽  
Miroslava Sedlackova ◽  
Ales Hampl ◽  
...  

A Gram-stain-negative, rod-shaped and white-coloured bacterial strain, designated LL03T, was isolated from hexachlorocyclohexane-contaminated soil at Spolana Neratovice, Czech Republic, where lindane was formerly produced. Strain LL03T was found to be a degrader of α-, γ- and δ-isomers of hexachlorocyclohexane, although no significant degradation activity was observed for the β-isomer. A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LL03T occupied a distinct phylogenetic position in the Sphingobium cluster, showing the highest similarity with Sphingobium wenxiniae JZ-1T (99.2 %). The DNA G+C content of strain LL03T was 67.0 mol%. DNA–DNA relatedness values of strain LL03T with its close phylogenetic neighbours were below the threshold level of 70 %, supporting its identification as a representative of a novel species of the genus Sphingobium . The predominant respiratory quinone was ubiquinone Q-10. The polar lipid profile of strain LL03T also corresponded to those reported for other Sphingobium species (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmonomethylethanolamine and sphingoglycolipid), supporting its identification as a member of the genus Sphingobium . Spermidine was identified as the major polyamine. The predominant fatty acids were 16 : 0, summed feature 3 (16 : 1ω7c and/or 16 : 1ω6c), summed feature 8 (18 : 1ω7c and/or 18 : 1ω6c) and 14 : 0 2-OH. The polar lipid pattern, the presence of spermidine and ubiquinone Q-10, the predominance of the cellular fatty acids C18 : 1ω7c, C16 : 0 and C14 : 0 2-OH and the G+C content of the genomic DNA supported the affiliation of the strain to the genus Sphingobium . The results obtained after DNA–DNA hybridization, biochemical and physiological tests clearly distinguished it from closely related species of the genus Sphingobium . Therefore, strain LL03T represents a novel species of the genus Sphingobium for which the name Sphingobium baderi LL03T sp. nov. is proposed; the type strain is LL03T ( = CCM 7981T = DSM 25433T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5355-5362 ◽  
Author(s):  
Heeyoung Kang ◽  
Inseong Cha ◽  
Haneul Kim ◽  
Kiseong Joh

Two novel strains (HMF3257T and HMF4905T), isolated from freshwater and bark samples, were investigated to determine their relationships within and between species of the genus Spirosoma by using a polyphasic approach. They were aerobic, Gram-stain-negative, non-motile and rod-shaped bacteria. The major fatty acids (>10%) in both strains were identified as summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 1 ω5c, while strains HMF3257T and HMF4905T contained a moderately high amount of C16 : 0 and iso-C15 : 0, respectively. The predominant respiratory quinone was MK-7 for both strains. In addition to phosphatidylethanolamine and one unidentified glycolipid, the polar lipid profile of strain HMF3257T consisted of three unidentified aminophospholipids, one unidentified aminolipid and two unidentified polar lipids, and that of strain HMF4905T consisted of one unidentified aminophospholipid, two unidentified aminolipids and three unidentified polar lipids. The DNA G+C contents of strains HMF3257T and HMF4905T were 47.2 and 46.4 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains HMF3257T and HMF4905T are closely related to Spirosoma migulaei 15J9-8T (97.0 % sequence similarity), while sharing 97.4 % sequence similarity with each other. The average nucleotide identity value between strains HMF3257T and HMF4905T was 81.1 %, and the digital DNA–DNA hybridization value between these two strains was 24.4 %. Based on the above data, strains HMF3257T and HMF4905T represent two novel members within the genus Spirosoma , for which the names Spirosoma telluris sp. nov. and Spirosoma arboris sp. nov. are proposed, respectively. The type strain of S. telluris is HMF3257T (=KCTC 62463T=NBRC 112670T) and type strain of S. arboris is HMF4905T (=KCTC 72779T=NBRC 114270T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 442-448 ◽  
Author(s):  
Samson Viulu ◽  
Kohei Nakamura ◽  
Yurina Okada ◽  
Sakiko Saitou ◽  
Kazuhiro Takamizawa

A novel species of Fe(III)-reducing bacterium, designated strain OSK6T, belonging to the genus Geobacter , was isolated from lotus field mud in Japan. Strain OSK6T was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, Gram-negative, motile, straight rod-shaped bacterium, 0.6–1.9 µm long and 0.2–0.4 µm wide. The growth of the isolate occurred at 20–40 °C with optima of 30–37 °C and pH 6.5–7.5 in the presence of up to 0.5 g NaCl l−1. The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6T was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6T is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6T is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6T ( = DSM 24905T = JCM 17780T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 723-728 ◽  
Author(s):  
Neha Niharika ◽  
Hana Moskalikova ◽  
Jasvinder Kaur ◽  
Fazlurrahman Khan ◽  
Miroslava Sedlackova ◽  
...  

A yellow-pigmented bacterial strain, designated LL01T, was isolated from hexachlorocyclohexane (HCH)-contaminated soil at Spolana Neratovice, a former Czech producer of lindane. A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LL01T occupied a distinct phylogenetic position in the Sphingobium cluster, showing highest similarity to Sphingobium rhizovicinum CC-FH12-1T (98.5 %). The DNA G+C content of strain LL01T was 66.1 mol%. The predominant respiratory pigment was ubiquinone Q-10. The polar lipid profile of strain LL01T also corresponded to those reported for other Sphingobium species (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipids), supporting its identification as a member of the genus Sphingobium . Spermidine was the major polyamine observed. The results obtained from DNA–DNA hybridization and biochemical and physiological tests clearly distinguished strain LL01T from closely related species of the genus Sphingobium . Therefore, strain LL01T represents a novel species of the genus Sphingobium , for which the name Sphingobium czechense sp. nov. is proposed (type strain LL01T = CCM 7979T = DSM 25410T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1264-1270 ◽  
Author(s):  
Heike Anders ◽  
Peter F. Dunfield ◽  
Kirill Lagutin ◽  
Karen M. Houghton ◽  
Jean F. Power ◽  
...  

A strictly aerobic, thermophilic, moderately acidophilic, non-spore-forming bacterium, strain P373T, was isolated from geothermally heated soil at Waikite, New Zealand. Cells were filamentous rods, 0.2–0.4 µm in diameter and grew in chains up to 80 µm in length. On the basis of 16S rRNA gene sequence similarity, strain P373T was shown to belong to the family Chitinophagaceae (class Sphingobacteriia ) of the phylum Bacteroidetes , with the most closely related cultivated strain, Chitinophaga pinensis UQM 2034T, having 87.6 % sequence similarity. Cells stained Gram-negative, and were catalase- and oxidase-positive. The major fatty acids were i-15 : 0 (10.8 %), i-17 : 0 (24.5 %) and i-17 : 0 3-OH (35.2 %). Primary lipids were phosphatidylethanolamine, two unidentified aminolipids and three other unidentified polar lipids. The presence of sulfonolipids (N-acyl-capnines) was observed in the total lipid extract by mass spectrometry. The G+C content of the genomic DNA was 47.3 mol% and the primary respiratory quinone was MK-7. Strain P373T grew at 35–63 °C with an optimum temperature of 60 °C, and at pH 5.5–8.7 with an optimum growth pH of 7.3–7.4. NaCl tolerance was up to 5 % (w/v) with an optimum of 0.1–0.25 % (w/v). Cell colonies were non-translucent and pigmented vivid yellow–orange. Cells displayed an oxidative chemoheterotrophic metabolism. The distinct phylogenetic position and the phenotypic characteristics separate strain P373T from all other members of the phylum Bacteroidetes and indicate that it represents a novel species in a new genus, for which the name Thermoflavifilum aggregans gen. nov., sp. nov. is proposed. The type strain of the type species is P373T ( = ICMP 20041T = DSM 27268T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1528-1535 ◽  
Author(s):  
Dong-Heon Lee ◽  
Sun Ja Cho ◽  
Suk Min Kim ◽  
Sun Bok Lee

A Gram-staining-negative, strictly aerobic, non-motile, yellow-pigmented bacterium, designated strain M091T, was isolated from seawater at Damupo beach in Pohang, Republic of Korea, and investigated using a polyphasic taxonomic approach. The novel strain grew optimally at 25 °C, pH 7.0–8.0, and in the presence of 3 % (w/v) NaCl. In a phylogenetic analysis based on 16S rRNA gene sequences, strain M091T formed a lineage within the family Flavobacteriaceae that was distinct from the most closely related genera of Flaviramulus (95.1 % sequence similarity), Algibacter (94.9–93.9 %), Mariniflexile (94.8–94.2 %), Winogradskyella (94.8–93.2 %), Lacinutrix (94.7–93.8 %) and Tamlana (94.7–92.9 %). The polar lipid profile of the novel strain comprised phosphatidylethanolamine, two unidentified aminolipids, one unidentified phospholipid and seven unidentified lipids. The predominant cellular fatty acids were iso-C15 : 0 (20.5 %), iso-C17 : 0 3-OH (15.4 %), iso-C15 : 0 3-OH (12.4 %), C15 : 0 (10.9 %) and iso-C15 : 1 G (9.9 %). The genomic DNA G+C content of strain M091T was 34.4 mol% and the major respiratory quinone was MK-6. Based on phenotypic and genotypic data, strain M091T represents a new genus and novel species in the family Flavobacteriaceae , for which the name Postechiella marina gen. nov., sp. nov. is proposed. The type strain of the type species is M091T ( = KCTC 23537T = JCM 17630T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3323-3327 ◽  
Author(s):  
Qian Wang ◽  
Sheng-Dong Cai ◽  
Jie Liu ◽  
De-Chao Zhang

The Gram-strain-negative, rod-shaped, facultatively anaerobic, non-motile bacterial strain, designated S1-10T, was isolated from marine sediment. Strain S1-10T grew at 4–42 °C (optimally at 30–35 °C), at pH 7.0–10 (optimally at pH 9) and in the presence of 0.5–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-10T was related to the genus Aequorivita and had highest 16S rRNA gene sequence similarity to Aequorivita viscosa 8-1bT (97.7%). The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G+C content of strain S1-10T was 34.6 mol%. The polar lipid profile of strain S1-10T contained phosphatidylethanolamine, two aminolipids, two glycolipids, one phosphoglycolipid and three unidentified polar lipids. In addition, the maximum values of in silico DNA–DNA hybridization (isDDH) and average nucleotide identity (ANI) between strain S1-10T and A. viscosa CGMCC 1.11023T were 15.4 and 75.7 %, respectively. Combined data from phenotypic, phylogenetic, isDDH and ANI analyses demonstrated that strain S1-10T is the representative of a novel species of the genus Aequorivita , for which we propose the name Aequorivita sinensis sp. nov. (type strain S1-10T=CGMCC 1.12579T=JCM 19789T). We also propose that Vitellibacter todarodis and Vitellibacter aquimaris should be transferred into genus Aequorivita and be named Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov., respectively. The type strain of Aequorivita todarodis comb. nov. is MYP2-2T (= KCTC 62141T= NBRC 113025T) and the type strain of Aequorivita aquimaris comb. nov. is D-24T (=KCTC 42708T=DSM 101732T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3234-3240 ◽  
Author(s):  
Sihui Zhang ◽  
Xiaoxia Wang ◽  
Jing Yang ◽  
Shan Lu ◽  
Xin-He Lai ◽  
...  

Two novel Gram-stain-positive, irregular rod-shaped actinomycetes, S-1144T and 4053, were isolated from leaves of Lamiophlomis rotata on the Qinghai–Tibet Plateau, PR China. Cells were aerobic, catalase-positive and oxidase-negative. Colonies on Reasoner’s 2A agar were light yellow, circular, shiny, smooth and convex after 2 days of incubation. The isolates grew optimally at 25 °C, pH 7.5 and with 0 % (w/v) NaCl. The results of polyphasic analyses indicated that strain S-1144T belonged to the genus Nocardioides and its close phylogenetic neighbours (16S rRNA gene sequence similarity) were Nocardioides litoris DSM 103718T (98.4 %), Nocardioides rubriscoriae DSM 23986T (98.2%) and Nocardioides plantarum DSM 11054T (97.8 %). The genome of strain S-1144T showed less than 70 % digital DNA–DNA hybridization and < 95–96 % average nucleotide identity values to the above reference strains. The DNA G+C content of strain S-1144T was 73.5 mol%. MK-8(H4) was the predominant respiratory quinone (96.0 %) and llLL-2,6-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan. The polar lipid profile of strain S-1144T consisted of diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids, one unidentified glycolipid and one unidentified lipid. The major cellular fatty acids were iso-C16 : 0, C17 : 1  ω8c, C17 : 0 and C18 : 1  ω9c. On the basis of obtained data, strain S-1144T represented a novel species of the genus Nocardioides , for which the name Nocardioides dongxiaopingii sp. nov. is proposed. The type strain is S-1144T (=CGMCC 4.7568T=JCM 33469T).


Sign in / Sign up

Export Citation Format

Share Document