Sphingobium baderi sp. nov., isolated from a hexachlorocyclohexane dump site

2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 673-678 ◽  
Author(s):  
Jasvinder Kaur ◽  
Hana Moskalikova ◽  
Neha Niharika ◽  
Miroslava Sedlackova ◽  
Ales Hampl ◽  
...  

A Gram-stain-negative, rod-shaped and white-coloured bacterial strain, designated LL03T, was isolated from hexachlorocyclohexane-contaminated soil at Spolana Neratovice, Czech Republic, where lindane was formerly produced. Strain LL03T was found to be a degrader of α-, γ- and δ-isomers of hexachlorocyclohexane, although no significant degradation activity was observed for the β-isomer. A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LL03T occupied a distinct phylogenetic position in the Sphingobium cluster, showing the highest similarity with Sphingobium wenxiniae JZ-1T (99.2 %). The DNA G+C content of strain LL03T was 67.0 mol%. DNA–DNA relatedness values of strain LL03T with its close phylogenetic neighbours were below the threshold level of 70 %, supporting its identification as a representative of a novel species of the genus Sphingobium . The predominant respiratory quinone was ubiquinone Q-10. The polar lipid profile of strain LL03T also corresponded to those reported for other Sphingobium species (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmonomethylethanolamine and sphingoglycolipid), supporting its identification as a member of the genus Sphingobium . Spermidine was identified as the major polyamine. The predominant fatty acids were 16 : 0, summed feature 3 (16 : 1ω7c and/or 16 : 1ω6c), summed feature 8 (18 : 1ω7c and/or 18 : 1ω6c) and 14 : 0 2-OH. The polar lipid pattern, the presence of spermidine and ubiquinone Q-10, the predominance of the cellular fatty acids C18 : 1ω7c, C16 : 0 and C14 : 0 2-OH and the G+C content of the genomic DNA supported the affiliation of the strain to the genus Sphingobium . The results obtained after DNA–DNA hybridization, biochemical and physiological tests clearly distinguished it from closely related species of the genus Sphingobium . Therefore, strain LL03T represents a novel species of the genus Sphingobium for which the name Sphingobium baderi LL03T sp. nov. is proposed; the type strain is LL03T ( = CCM 7981T = DSM 25433T).

2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 667-672 ◽  
Author(s):  
Neha Niharika ◽  
Hana Moskalikova ◽  
Jasvinder Kaur ◽  
Miroslava Sedlackova ◽  
Ales Hampl ◽  
...  

A yellow-pigmented bacterial strain, designated LL02T, was isolated from hexachlorocyclohexane-contaminated soil from Spolana Neratovice, a former Czech producer of lindane. A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LL02T occupied a distinct phylogenetic position in the genus Novosphingobium and showed the highest sequence similarity with Novosphingobium resinovorum NCIMB 8767T (98.59 %). DNA–DNA relatedness between strain LL02T and its closest phylogenetic neighbours was <70 %, which indicated that strain LL02T represented a novel species of the genus Novosphingobium . The DNA G+C content of strain LL02T was 67.72±0 mol%. The major respiratory quinone was ubiquinone Q-10. The polar lipid profile of the isolate corresponded to those reported for other members of the genus Novosphingobium (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmonomethylethanolamine and sphingoglycolipids), thus supporting its classification in the genus. Spermidine was the major polyamine. The major fatty acids were summed feature 3 (consisting of C16 : 1ω7c and/or C16 : 1ω6c; 40.13 %), summed feature 8 (consisting of C18 : 1ω7c and/or C18 : 1ω6c; 31.09 %) and C14 : 0 2-OH (23.16 %). The results obtained from DNA–DNA hybridization and biochemical and physiological tests clearly distinguished the isolate from its closest phylogenetic neighbours. Thus, strain LL02T represents a novel species of the genus Novosphingobium , for which the name Novosphingobium barchaimii sp. nov. is proposed. The type strain is LL02T ( = CCM 7980T  = DSM 25411T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 442-448 ◽  
Author(s):  
Samson Viulu ◽  
Kohei Nakamura ◽  
Yurina Okada ◽  
Sakiko Saitou ◽  
Kazuhiro Takamizawa

A novel species of Fe(III)-reducing bacterium, designated strain OSK6T, belonging to the genus Geobacter , was isolated from lotus field mud in Japan. Strain OSK6T was isolated using a solid medium containing acetate, Fe(III)-nitrilotriacetate (NTA) and gellan gum. The isolate is a strictly anaerobic, Gram-negative, motile, straight rod-shaped bacterium, 0.6–1.9 µm long and 0.2–0.4 µm wide. The growth of the isolate occurred at 20–40 °C with optima of 30–37 °C and pH 6.5–7.5 in the presence of up to 0.5 g NaCl l−1. The G+C content of the genomic DNA was determined by HPLC to be 59.7 mol%. The major respiratory quinone was MK-8. The major fatty acids were 16 : 1ω7c and 16 : 0. Strain OSK6T was able to grow with Fe(III)-NTA, ferric citrate, amorphous iron (III) hydroxide and nitrate, but not with fumarate, malate or sulfate as electron acceptors. Among examined substrates grown with Fe(III)-NTA, the isolate grew on acetate, lactate, pyruvate and succinate. Analysis of the near full-length 16S rRNA gene sequence revealed that strain OSK6T is closely related to Geobacter daltonii and Geobacter toluenoxydans with 95.6 % similarity to the type strains of these species. On the basis of phylogenetic analysis and physiological tests, strain OSK6T is described as a representative of a novel species, Geobacter luticola sp. nov.; the type strain is OSK6T ( = DSM 24905T = JCM 17780T).


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 723-728 ◽  
Author(s):  
Neha Niharika ◽  
Hana Moskalikova ◽  
Jasvinder Kaur ◽  
Fazlurrahman Khan ◽  
Miroslava Sedlackova ◽  
...  

A yellow-pigmented bacterial strain, designated LL01T, was isolated from hexachlorocyclohexane (HCH)-contaminated soil at Spolana Neratovice, a former Czech producer of lindane. A neighbour-joining tree based on 16S rRNA gene sequences showed that strain LL01T occupied a distinct phylogenetic position in the Sphingobium cluster, showing highest similarity to Sphingobium rhizovicinum CC-FH12-1T (98.5 %). The DNA G+C content of strain LL01T was 66.1 mol%. The predominant respiratory pigment was ubiquinone Q-10. The polar lipid profile of strain LL01T also corresponded to those reported for other Sphingobium species (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipids), supporting its identification as a member of the genus Sphingobium . Spermidine was the major polyamine observed. The results obtained from DNA–DNA hybridization and biochemical and physiological tests clearly distinguished strain LL01T from closely related species of the genus Sphingobium . Therefore, strain LL01T represents a novel species of the genus Sphingobium , for which the name Sphingobium czechense sp. nov. is proposed (type strain LL01T = CCM 7979T = DSM 25410T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 138-145 ◽  
Author(s):  
Asif Hameed ◽  
Mariyam Shahina ◽  
Shih-Yao Lin ◽  
Wei-An Lai ◽  
Yi-Han Hsu ◽  
...  

A Gram-stain-negative, strictly aerobic, rod-shaped, non-flagellated, non-spore-forming and gliding marine bacterium, designated strain CC-AMZ-304T, was isolated from coastal surface seawater near Taichung harbour, Taiwan. Strain CC-AMZ-304T predominantly synthesized zeaxanthin and thus formed yellow colonies on marine agar. The novel strain showed an unstable phylogenetic position, although sharing high pairwise 16S rRNA gene sequence similarities of 95.9–94.9, 95.7 and 95.1–93.9 % with Gaetbulibacter species (n = 4), Aestuariibaculum suncheonense SC17T and Bizionia species (n = 7), respectively. The polar lipid profile of strain CC-AMZ-304T consisted of phosphatidylethanolamine, five unidentified lipids, one unidentified phospholipid, two unidentified aminolipids and one unidentified glycolipid. The major (>5 % of the total) fatty acids were iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and C15 : 1ω5c. The DNA G+C content was 36.0 mol%. Menaquinone-6 (MK-6) was the sole respiratory quinone and the major polyamine was triamine sym-homospermidine. Phylogenetic distinctiveness, unique polar lipid composition, presence of significant amounts of branched hydroxyl fatty acids (iso-C17 : 0 3-OH and iso-C15 : 0 3-OH) and a low amount of anteiso-C15 : 0, and several additional distinguishing biochemical features clearly discriminated strain CC-AMZ-304T from the type species of the genera Aestuariibaculum and Gaetbulibacter . Thus, based on data from the present polyphasic study, strain CC-AMZ-304T is considered to represent a novel species of a new genus within the family Flavobacteriaceae , for which the name Aquibacter zeaxanthinifaciens gen. nov., sp. nov. is proposed; the type strain of Aquibacter zeaxanthinifaciens is CC-AMZ-304T ( = JCM 18557T = BCRC 80463T). Emended descriptions of the genera Aestuariibaculum and Gaetbulibacter are also proposed.


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2133-2139 ◽  
Author(s):  
S. Shivaji ◽  
P. Vishnu Vardhan Reddy ◽  
S. S. S. Nageshwara Rao ◽  
Zareena Begum ◽  
Poorna Manasa ◽  
...  

A novel Gram-stain-negative, horseshoe-shaped, non-motile bacterium, designated strain M12-11BT, was isolated from a marine sediment sample collected at a depth of 200 m from Kongsfjorden, Svalbard. The colony colour was orangish red due to the presence of carotenoids. Fatty acids were dominated by branched and unsaturated fatty acids (90.8 %), with a high abundance of iso-C15 : 0 (14.9 %), anteiso-C15 : 0 (11.4 %), iso-C15 : 1 G (13.1 %), C15 : 1ω6c (5.4 %), C17 : 1ω6c (6.7 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c; 9.3 %) and summed feature 9 (10-methyl C16 : 0 and/or iso-C17 : 1ω9c; 5.9 %). Strain M12-11BT contained MK-7 as the major respiratory quinone. The polar lipids consisted of phosphatidylcholine, phosphatidylethanolamine, one unidentified aminolipid and three unidentified lipids. Based on 16S rRNA gene sequence similarities, the type strains of Cyclobacterium amurskyense , Cyclobacterium marinum and Cyclobacterium lianum were most closely related to M12-11BT with sequence similarities of 98.2, 96.8 and 93.3 %, respectively. Other members of the family Cyclobacteriaceae had sequence similarities of <92.0 %. However, DNA–DNA hybridization with Cyclobacterium amurskyense KCTC 12363T and Cyclobacterium marinum DSM 745T showed relatedness values of only 24.5 and 32.5 % with respect to strain M12-11BT. Based on the results of DNA–DNA hybridization experiments and phenotypic and chemotaxonomic data, it appears that strain M12-11BT represents a novel species of the genus Cyclobacterium , for which the name Cyclobacterium qasimii sp. nov. is proposed; the type strain is M12-11BT ( = KCTC 23011T = NBRC 106168T) and it has a DNA G+C content of 40.5 mol%.


2020 ◽  
Vol 70 (3) ◽  
pp. 1868-1875 ◽  
Author(s):  
Shan-Hui Li ◽  
Jaeho Song ◽  
Yeonjung Lim ◽  
Yochan Joung ◽  
Ilnam Kang ◽  
...  

A Gram-stain-negative, rod-shaped, aerobic, non-flagellated, chemoheterotrophic bacterium, designated IMCC14385T, was isolated from surface seawater of the East Sea, Republic of Korea. The 16S rRNA gene sequence analysis indicated that IMCC14385T represented a member of the genus Halioglobus sharing 94.6–97.8 % similarities with species of the genus. Whole-genome sequencing of IMCC14385T revealed a genome size of 4.3 Mbp and DNA G+C content of 56.7 mol%. The genome of IMCC14385T shared an average nucleotide identity of 76.6 % and digital DNA–DNA hybridization value of 21.6 % with the genome of Halioglobus japonicus KCTC 23429T. The genome encoded the complete poly-β-hydroxybutyrate biosynthesis pathway. The strain contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C17 : 1 ω8c as the predominant cellular fatty acids as well as ubiquinone-8 (Q-8) as the respiratory quinone. The polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unidentified phospholipids, an unidentified aminolipid, an unidentified aminophospholipid and four unidentified lipids. On the basis of taxonomic data obtained in this study, it is suggested that IMCC14385T represents a novel species of the genus Halioglobus , for which the name Halioglobus maricola sp. nov. is proposed. The type strain is IMCC14385T (=KCTC 72520T=NBRC 114072T).


2012 ◽  
Vol 62 (Pt_12) ◽  
pp. 2997-3002 ◽  
Author(s):  
Neha Niharika ◽  
Swati Jindal ◽  
Jasvinder Kaur ◽  
Rup Lal

A bacterial strain, designated Dd16T, was isolated from a hexachlorocyclohexane (HCH) dumpsite at Lucknow, India. Cells of strain Dd16T were Gram-stain-negative, non-motile, rod-shaped and yellow-pigmented. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain belonged to the genus Sphingomonas in the family Sphingomonadaceae , as it showed highest sequence similarity to Sphingomonas asaccharolytica IFO 15499T (95.36 %), Sphingosinicella vermicomposti YC7378T (95.30), ‘Sphingomonas humi’ PB323 (95.20 %), Sphingomonas sanxanigenens NX02T (95.14 %) and Sphingomonas desiccabilis CP1DT (95.00 %). The major fatty acids were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c) C14 : 0 2-OH, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The polar lipid profile of strain Dd16T also corresponded to those reported for species of the genus Sphingomonas (phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, and a sphingoglycolipid), again supporting its identification as a member of the genus Sphingomonas . The predominant respiratory quinone was ubiquinone Q10, and sym-homospermidine was the major polyamine observed. The total DNA G+C content of strain Dd16T was 65.8 mol%. The results obtained on the basis of phenotypic characteristics and phylogenetic analysis and after biochemical and physiological tests, clearly distinguished strain Dd16T from closely related members of the genus Sphingomonas . Thus, strain Dd16T represents a novel species of the genus Sphingomonas for which the name Sphingomonas indica sp. nov. is proposed. The type strain is Dd16T ( = DSM 25434T = CCM 7882T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3453-3458 ◽  
Author(s):  
Hao Feng ◽  
Yanhua Zeng ◽  
Yili Huang

A novel Gram-stain-negative bacteria, designated S37T, was isolated from soil of the Xixi wetland, Zhejiang province, China. Cells of strain S37T were aerobic, non-motile rods. Growth occurred at 10–37 °C (optimum, 25 °C), pH 5.0–9.7 (optimum, pH 7.5) and with 0–6 % (w/v) NaCl (optimum, 0.5 %). Based on 16S rRNA gene sequence analysis, strain S37T was found to be a member of the genus Sphingobacterium and shared highest similarity with Sphingobacterium composti 4M24T (95.78 %). The major fatty acids were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C15 : 0 and iso-C17 : 0 3-OH, and the DNA G+C content was 43.8 mol%. The predominant respiratory quinone was MK-7. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain S37T represents a novel species of the genus Sphingobacterium , for which the name Sphingobacterium paludis sp. nov. (type strain S37T = CGMCC 1.12801T = NBRC 110386T) is proposed.


Author(s):  
Lei-Lei Yang ◽  
Hong-Can Liu ◽  
Qing Liu ◽  
Yu-Hua Xin

Two Gram-stain-positive, aerobic, rod-shaped, pink and light pink colony-forming bacteria, designated as Hz2T and MDT2-14T, respectively, were isolated from glacier cryoconite samples. Comparisons based on 16S rRNA gene sequences showed that strains Hz2T and MDT2-14T take Arthrobacter bussei KR32T and Arthrobacter zhaoguopingii J391T as their closest neighbours, respectively. The average nucleotide identity values between the two novel strains and their closest relatives were 83.56 and 93.06 %, respectively. The two strains contain MK-9(H2) as their predominant menaquinone. The polar lipids of both strains were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and an unidentified glycolipid. The major fatty acids of strain Hz2T were anteiso-C15 : 0, summed feature 3 (comprising C16 : 1  ω7c and/or C16 : 1  ω6c) and iso-C15 : 0, while the major fatty acids of strain MDT2-14T were anteiso-C15 : 0 and anteiso-C17 : 0. Based on these data, we propose two novel species, Arthrobacter cheniae sp. nov. (Hz2T = CGMCC 1.9262T=NBRC 113086T) and Arthrobacter frigidicola sp. nov. (MDT2-14T=CGMCC 1.9882T=NBRC 113089T).


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 66-71 ◽  
Author(s):  
Jin-Jin Liu ◽  
Xin-Qi Zhang ◽  
Fang-Tao Chi ◽  
Jie Pan ◽  
Cong Sun ◽  
...  

A Gram-stain-negative, non-motile and aerobic bacterium, designated CF17T, was isolated from coastal planktonic seaweeds, East China Sea. The isolate grew at 18–37 °C (optimum 25–28 °C), pH 6.5–9.0 (optimum 7.0–8.0) and with 0–5 % NaCl (optimum 1–2 %, w/v) and 0.5–10 % sea salts (optimum 2–3 %, w/v). Growth of strain CF17T could be stimulated prominently by supplementing the growth medium with the autoclaved supernatant of a culture of strain CF5, which was isolated from the same sample along with strain CF17T. The cell morphology of strain CF17T was a bean-shaped rod consisting of a swollen end and a long prostheca. The phylogenetic analysis of 16S rRNA gene sequences indicated that strain CF17T clustered with Gemmobacter nectariphilus DSM 15620T within the genus Gemmobacter . The DNA G+C content of strain CF17T was 61.4 mol%. The respiratory quinone was ubiquinone Q-10. The major fatty acids included C18 : 1ω7c and C18 : 0. The polar lipids of strain CF17T consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, two uncharacterized phospholipids, one uncharacterized aminolipid, three uncharacterized glycolipids and one uncharacterized lipid. On the basis of phenotypic, phylogenetic and chemotaxonomic data, strain CF17T ( = CGMCC 1.11024T = JCM 18498T) is considered to represent a novel species of the genus Gemmobacter , for which the name Gemmobacter megaterium sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document