scholarly journals Ornatilinea apprima gen. nov., sp. nov., a cellulolytic representative of the class Anaerolineae

2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 86-92 ◽  
Author(s):  
O. A. Podosokorskaya ◽  
E. A. Bonch-Osmolovskaya ◽  
A. A. Novikov ◽  
T. V. Kolganova ◽  
I. V. Kublanov

A novel obligately anaerobic, mesophilic, organotrophic bacterium, strain P3M-1T, was isolated from a microbial mat formed in a wooden bath filled with hot water emerging from a 2775 m-deep well in the Tomsk region of western Siberia, Russia. Cells of strain P3M-1T were rod-shaped, 0.3–0.7 µm in width and formed multicellullar filaments that reached up to 400 µm in length. Strain P3M-1T grew optimally at 42–45 °C, pH 7.5–8.0, and with 0.1% (w/v) NaCl. Under optimal conditions, the doubling time was 6 h. The isolate was able to ferment a variety of proteinaceous substrates and sugars, including microcrystalline cellulose. Acetate, ethanol and H2 were the main products of glucose fermentation. The genomic DNA G+C content was 55 mol%. 16S rRNA gene sequence-based phylogenetic analyses showed that strain P3M-1T was a member of the class Anaerolinea , with 92.8 % sequence similarity to Levilinea saccharolytica KIBI-1T. Based on phylogenetic analysis and physiological properties, strain P3M-1T represents a novel species in a new genus, for which the name Ornatilinea apprima gen. nov., sp. nov. is proposed; the type strain of O. apprima is P3M-1T ( = DSM 23815T = VKM B-2669T).

2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1587-1592 ◽  
Author(s):  
Hisaya Kojima ◽  
Manabu Fukui

A novel facultatively autotrophic bacterium, strain BSN1T was isolated from sediment of a freshwater lake in Japan. The cells were rod-shaped, motile and Gram-stain-negative. As sole energy sources for autotrophic growth, the strain oxidized thiosulfate, elemental sulfur and hydrogen. Strain BSN1T was a facultative anaerobe utilizing nitrate as an electron acceptor. Growth was observed at temperatures lower than 34 °C, and the optimum growth was observed at 30–32 °C. The range of pH for growth was pH 6.8–8.8, and the optimum pH was pH 7.8–8.1. The optimum growth of the isolate occurred at concentrations of NaCl less than 50 mM. The G+C content of genomic DNA was 67 mol%. The major component in the fatty acid profile of strain BSN1T grown on fumarate was summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain was a member of the class Betaproteobacteria , and it showed the highest sequence similarity with Georgfuchsia toluolica G5G6T (96.2 %). Phylogenetic analyses were also performed on genes involved in sulfur oxidation. On the basis of its phylogenetic and phenotypic properties, strain BSN1T ( = DSM 26916T = NBRC 109412T) is proposed as the type strain of a novel species of a novel genus, Sulfurisoma sediminicola gen. nov., sp. nov.


2012 ◽  
Vol 62 (Pt_4) ◽  
pp. 890-894 ◽  
Author(s):  
G. B. Slobodkina ◽  
A. N. Panteleeva ◽  
T. G. Sokolova ◽  
E. A. Bonch-Osmolovskaya ◽  
A. I. Slobodkin

A thermophilic, anaerobic, dissimilatory Mn(IV)- and Fe(III)-reducing bacterium (strain SLM 61T) was isolated from a terrestrial hot spring on the Kamchatka peninsula. The cells were straight rods, 0.5–0.6 µm in diameter and 1.0–6.0 µm long, and exhibited tumbling motility by means of peritrichous flagellation. The strain grew at 26–70 °C, with an optimum at 58–60 °C, and at pH 5.5–8.0, with an optimum at pH 6.5. Growth of SLM 61T was observed at 0–2.0 % (w/v) NaCl, with an optimum at 0.5 % (w/v). The generation time under optimal growth conditions was 40 min. Strain SLM 61T grew and reduced Mn(IV), Fe(III) or nitrate with a number of organic acids and complex proteinaceous compounds as electron donors. It was capable of chemolithoautotrophic growth using molecular hydrogen as an electron donor, Fe(III) but not Mn(IV) or nitrate as an electron acceptor and CO2 as a carbon source. It also was able to ferment pyruvate, yeast extract, glucose, fructose, sucrose and maltose. The G+C content of DNA of strain SLM 61T was 50.9 mol%. 16S rRNA gene sequence analysis revealed that the closest relative of the isolated organism was Carboxydocella thermautotrophica 41T (96.9 % similarity). On the basis of its physiological properties and phylogenetic analyses, the isolate is considered to represent a novel species, for which the name Carboxydocella manganica sp. nov. is proposed. The type strain is SLM 61T ( = DSM 23132T  = VKM B-2609T). C. manganica is the first described representative of the genus Carboxydocella that possesses the ability to reduce metals and does not utilize CO.


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2424-2429 ◽  
Author(s):  
Na-Ri Shin ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
Bora Yun ◽  
Tae Woong Whon ◽  
...  

A novel Gram-negative, obligately aerobic, non-motile, rod-shaped bacterium, strain M97T, was isolated from marine sediment of a cage-cultured ark clam farm on the south coast of Korea. Strain M97T was positive for oxidase and catalase. Optimal growth occurred at 37 °C, with 1–2 % (w/v) NaCl and at pH 7–8. The main cellular fatty acids were C16 : 0, C18 : 1ω7c, C12 : 0 3-OH and cyclo-C19 : 0ω8c. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unknown aminolipid and three unknown lipids. The predominant respiratory quinone was ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain M97T belongs to the genus Tropicimonas , with highest sequence similarity to Tropicimonas aquimaris DPG-21T (99.0 %). The DNA G+C content of strain M97T was 68.5 mol%. Mean DNA–DNA relatedness between strain M97T and T. aquimaris DPG-21T was 46±10 %. Based on phylogenetic, phenotypic and genotypic analyses, strain M97T is considered to represent a novel species of the genus Tropicimonas , for which the name Tropicimonas sediminicola sp. nov. is proposed. The type strain is M97T ( = KACC 15544T = JCM 17731T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2616-2623 ◽  
Author(s):  
Dhanesh Kumar ◽  
Kumar Gaurav ◽  
Jagadeeshwari U ◽  
Deepshikha G ◽  
Sasikala Ch. ◽  
...  

Strain JC651T was isolated from a sediment sample collected from Chilika lagoon, which is one of the world’s most important brackish water lakes with estuarine characteristics. Colonies of this strain are light pink and cells are Gram-stain negative, spherical to pear shaped and form rosettes. Strain JC651T grows well up to pH 9.0 and tolerates up to 5 % NaCl (w/v). The respiratory quinone is MK6. The detected major fatty acids are C18 : 1 ω9c and C16 : 0. Its polar lipids are diphosphatidylglycerol, an unidentified phospholipid, phosphatidylglycerol and phosphatidylcholine. Strain JC651T shows highest 16S rRNA gene sequence similarity (97.8%) to the type species of the genus Roseimaritima , Roseimaritima ulvae UC8T. The genome size of strain JC651T is 6.2 Mb with a G+C content of 62.4 mol%. For the resolution of the phylogenetic congruence of the novel strain, the phylogeny was also reconstructed with the sequences of 92 core genes. Based on the phylogenetic analyses, low digital DNA–DNA hybridization values (19.5%), low (74.9%) genome average nucleotide identity results, chemotaxonomic characteristics and differential physiological properties, strain JC651T is recognized as a new species of the genus Roseimaritima for which we propose the name Roseimaritima sediminicola sp. nov. The type strain is JC651T (=KCTC 72178T=NBRC 113926T).


2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 516-521 ◽  
Author(s):  
Gaiyun Zhang ◽  
Yubian Zhang ◽  
Xijie Yin ◽  
Shuang Wang

A Gram-staining-positive, aerobic, motile and non-spore-forming actinobacteria, designated strain F10T, was isolated from a deep-sea sediment of the western Pacific Ocean. Phylogenetic and phenotypic properties of the organism supported that it belonged to the genus Nesterenkonia . Strain F10T shared highest 16S rRNA gene sequence similarity of 96.8 % with Nesterenkonia aethiopica DSM 17733T, followed by Nesterenkonia xinjiangensis YIM 70097T (96.7 %) and Nesterenkonia alba CAAS 252T (96.6 %). The organism grew at 4–50 °C, at pH 7.0–12.0 and in the presence of 0–12 % (w/v) NaCl, with optimal growth occurring at 40 °C, at pH 9.0 and in the presence of 1 % (w/v) NaCl. The peptidoglycan type was A4(alpha), l-Lys–Gly–l-Glu. The polar lipid profile of strain F10T consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unknown glycolipids and two unknown lipids. The isolate contained MK-9 (92 %) and MK-8 (5.8 %) as the major components of the menaquinone system, and anteiso-C17 : 0 (50.9 %) and anteiso-C15 : 0 (29.8 %) as the predominant fatty acids. The G+C content of the genomic DNA of strain F10T was 66.2 mol%. Based on phenotypic, genotypic and phylogenetic analyses, strain F10T represents a novel species of the genus Nesterenkonia for which the name Nesterenkonia alkaliphila sp. nov. is proposed. The type strain is F10T ( = LMG 28112T = CGMCC 1.12781T = JCM 19766T = MCCC 1A09946T).


2013 ◽  
Vol 63 (Pt_5) ◽  
pp. 1766-1770 ◽  
Author(s):  
Joon Yong Kim ◽  
Jina Lee ◽  
Na-Ri Shin ◽  
Ji-Hyun Yun ◽  
Tae Woong Whon ◽  
...  

A novel Gram-stain-negative, facultatively anaerobic, non-motile and coccus-shaped bacterium, strain C7T, was isolated from the gut of the butterfly Sasakia charonda. Strain C7T grew optimally at 20–25 °C, at pH 7–8 and with 1 % (w/v) NaCl. The strain was negative for oxidase activity but positive for catalase activity. The 16S rRNA gene sequences of strain C7T and Orbus hercynius CN3T shared 96.8 % similarity. The major fatty acids identified were C14 : 0, C16 : 0, C18 : 1ω7c and summed feature 2 (comprising C14 : 0 3-OH/iso-C16 : 1). The major respiratory quinone was ubiquinone-8 (Q-8). The polar lipids of strain C7T were phosphatidylethanolamine, phosphatidylglycerol, an unidentified phospholipid and two unidentified aminophospholipids. The G+C content of the genomic DNA extracted from strain C7T was 32.1 mol%. Taken together, the phenotypic, genotypic and phylogenetic analyses indicate that strain C7T represents a novel species of the genus Orbus , for which the name Orbus sasakiae sp. nov. is proposed. The type strain is C7T ( = KACC 16544T = JCM 18050T). An emended description of the genus Orbus is provided.


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 122-127 ◽  
Author(s):  
Tong Yu ◽  
Zenghu Zhang ◽  
Xiaoyang Fan ◽  
Xiaochong Shi ◽  
Xiao-Hua Zhang

A novel Gram-stain-negative, rod-shaped, non-flagellated, strictly aerobic strain with gliding motility, designated XH134T, was isolated from surface seawater of the South Pacific Gyre (45° 58′ S 163° 11′ W) during the Integrated Ocean Drilling Program Expedition 329. The major respiratory quinone of strain XH134T was MK-6. The dominant fatty acids of strain XH134T were iso-C15 : 0, iso-C15 : 1 G, C16 : 1ω6c and/or C16 : 1ω7c, iso-C17 : 0 3-OH, iso-C15 : 0 3-OH and 10-methyl C16 : 0 and/or iso-C17 : 1ω9c. The polar lipids of strain XH134T comprised phosphatidylethanolamine, one unknown aminolipid and three unknown polar lipids. The DNA G+C content of strain XH134T was 32.4 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that the novel strain was related most closely to Aquimarina macrocephali JAMB N27T with 96.9 % sequence similarity. A number of phenotypic characteristics distinguished strain XH134T from described members of the genus Aquimarina . On the basis of combined phenotypic and phylogenetic analyses, strain XH134T represents a novel species of the genus Aquimarina , for which the name Aquimarina megaterium sp. nov. is proposed. The type strain is XH134T ( = CGMCC 1.12186T = JCM 18215T).


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 934-938 ◽  
Author(s):  
Wen-Ming Chen ◽  
Rey-Chang Chang ◽  
Chih-Yu Cheng ◽  
Yu-Wen Shiau ◽  
Shih-Yi Sheu

A novel bacterium, designated strain JchiT, was isolated from soil in Taiwan and characterized using a polyphasic approach. Cells of strain JchiT were aerobic, Gram-stain-negative, motile and rod-shaped. They contained poly-β-hydroxybutyrate granules and formed dark-yellow colonies. Growth occurred at 20–37 °C (optimum between 25 and 30 °C), at pH 6.0–8.0 (optimum between pH 7.0 and pH 8.0) and with 0–2 % NaCl (optimum between 0 and 1 %). Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain JchiT belonged to the genus Jeongeupia and that its closest neighbour was Jeongeupia naejangsanensis BIO-TAS4-2T (98.0 % sequence similarity). The major fatty acids (>10 %) of strain JchiT were summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω7c. The major cellular hydroxy fatty acid was C12 : 0 3-OH. The isoprenoid quinone was Q-8 and the genomic DNA G+C content was 66.1 mol%. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylserine and two unidentified phospholipids. The DNA–DNA relatedness value between strain JchiT and J. naejangsanensis BIO-TAS4-2T was about 41.0 %. On the basis of the genotypic and phenotypic data, strain JchiT represents a novel species in the genus Jeongeupia , for which the name Jeongeupia chitinilytica sp. nov. is proposed. The type strain is JchiT ( = BCRC 80367T  = KCTC 23701T).


Author(s):  
Fenfa Li ◽  
Qingyi Xie ◽  
Shuangqing Zhou ◽  
Fandong Kong ◽  
Yun Xu ◽  
...  

Strain HNM0947T, representing a novel actinobacterium, was isolated from the coral Galaxea astreata collected from the coast of Wenchang, Hainan, China. The strain was found to have morphological and chemotaxonomic characteristics consistent with the genus Nocardiopsis . The organism formed abundant fragmented substrate mycelia and aerial mycelia which differentiated into non-motile, rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid and no diagnostic sugars. The major menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were iso-C16:0, anteiso-C17:0, C18:0, C18:0 10-methyl (TBSA) and anteiso-C15:0. The G+C content was 71.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HNM0947T belonged to the genus Nocardiopsis and shared highest sequence similarity to Nocardiopsis salina YIM 90010T (98.8%), Nocardiopsis xinjiangensis YIM 90004T(98.5%) and Nocardiopsis kunsanensis DSM 44524T (98.3%). The strain HNM0947T was distinguished from its closest type strain by low average nucleotide identity (90.8%) and dDDH values (60.4%) respectively. Based on genotypic, chemotaxonomic and phenotypic characteristics, it was concluded that strain HNM0947T represents a novel species of the genus Nocardiopsis whose name was proposed as Nocardiopsis coralli sp. nov. The type strain was HNM0947T (=CCTCC AA 2020015 T=KCTC 49525 T).


Author(s):  
Silvio Hering ◽  
Moritz K. Jansson ◽  
Michael E. J. Buhl

A novel species within the genus Eikenella is described, based on the phenotypical, biochemical and genetic characterization of a strain of a facultatively anaerobic, Gram-negative rod-shaped bacterium. Strain S3360T was isolated from the throat swab of a patient sampled during routine care at a hospital. Phylogenetic analyses (full-length 16S rRNA gene and whole-genome sequences) placed the strain in the genus Eikenella , separate from all recognized species but with the closest relationship to Eikenella longinqua (NML 02-A-017T). Eikenella is one of the genera in the HACEK group known to be responsible for rare cases of endocarditis in humans. Until the recent descriptions of Eikenella exigua , Eikenella halliae and Eikenella longinqua , Eikenella corrodens had been the only validly published species in this genus since its description as Bacteroides corrodens in 1958. Unlike these species, strain S3360T is able to metabolize carbohydrates (glucose). The average nucleotide identities of strain S3360T with E. longinqua (NML 02-A-017T) and E. corrodens (NCTC 10596T), the type species of the genus, were 90.5 and 84.7 %, respectively, and the corresponding genome-to-genome distance values were 41.3 and 29.0 %, respectively. The DNA G+C content of strain S3360T was 58.4 mol%. Based on the phenotypical, biochemical and genetic findings, strain S3360T is considered to represent a novel species within the genus Eikenella , for which the name Eikenella glucosivorans sp. nov. is proposed. The type strain is S3360T (DSM 110714T=CCOS 1935T=CCUG 74293T). In addition, an emendation of the genus Eikenella is proposed to include species which are saccharolytic.


Sign in / Sign up

Export Citation Format

Share Document