Acrocarpospora phusangensis sp. nov., isolated from a temperate peat swamp forest soil

2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2174-2179 ◽  
Author(s):  
Nantawan Niemhom ◽  
Chanwit Suriyachadkun ◽  
Tomohiko Tamura ◽  
Chitti Thawai

A novel actinomycete, strain PS33-18T, that formed club-shaped and spherical structures borne on the tip of the aerial mycelia was isolated from a temperate peat swamp forest soil in Phu-Sang National Park, Phayao Province, Thailand. The isolate contained glutamic acid, alanine and meso-diaminopimelic acid in the cell-wall peptidoglycan. The whole-cell sugars of strain PS33-18T were glucose, madurose, mannose, rhamnose and ribose. The characteristic phospholipids were phosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxy-phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannosides and ninhydrin-positive phosphoglycolipids. The predominant menaquinone was MK-9(H4). The major cellular fatty acids were C17 : 1ω8c, iso-C16 : 0 and C16 : 0. The G+C content of the genomic DNA of strain PS33-18T was 71.0 mol%. Phylogenetic analysis using 16S rRNA gene sequences revealed that strain PS33-18T should be classified in the genus Acrocarpospora . The level of similarity between this strain and the closely related species Acrocarpospora macrocephala NBRC 16266T was 98.3 %, Acrocarpospora pleiomorpha NBRC 16267T was 97.9 %, Acrocarpospora corrugata NBRC 13972T was 97.6 %, Herbidospora sakaeratensis NBRC 102641T was 97.6 % and Planotetraspora kaengkrachanensis NBRC 104272T was 97.3 %. DNA–DNA hybridization results and physiological and biochemical properties indicated that strain PS33-18T could be distinguished readily from its closest phylogenetic relatives. On the basis of these phenotypic and genotypic data, this strain represents a novel species, for which the name Acrocarpospora phusangensis sp. nov. is proposed. The type strain is PS33-18T ( = BCC 46906T = NBRC 108782T).

2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 66-71 ◽  
Author(s):  
Nantawan Niemhom ◽  
Chanwit Suriyachadkun ◽  
Tomohiko Tamura ◽  
Chitti Thawai

A novel actinomycete strain, PS7-2T, which produced spore chains borne on the tips of short sporophores, was isolated from soil collected from a temperate peat swamp forest in Phu-Sang National Park, Phayao province, Thailand. The isolate contained glutamic acid, glycine, alanine, 3-hydroxy-diaminopimelic acid and meso-diaminopimelic acid in the cell-wall peptidoglycan. The whole-cell sugars were glucose, mannose, rhamnose and xylose, and the major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and phosphatidylethanolamine. The predominant menaquinones were MK-10(H8) and MK-9(H8) and the predominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 72.3 mol%. On the basis of 16S rRNA gene sequence analysis, strain PS7-2T clustered with members of the genus Asanoa and appeared most closely related to the type strains of Asanoa hainanensis (99.5 % sequence similarity), Asanoa iriomotensis (99.0 %), Asanoa ishikariensis (98.9 %) and Asanoa ferruginea (98.5 %). DNA–DNA hybridizations and some physiological and biochemical properties indicated that strain PS7-2T could be readily distinguished from its closest phylogenetic relatives. Based on the phenotypic and genotypic evidence and DNA–DNA relatedness values, strain PS7-2T represents a novel species in the genus Asanoa , for which the name Asanoa siamensis sp. nov. is proposed; the type strain is PS7-2T ( = BCC 41921T = NBRC 107932T).


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 890-895 ◽  
Author(s):  
Wongsakorn Phongsopitanun ◽  
Somboon Tanasupawat ◽  
Khanit Suwanborirux ◽  
Moriya Ohkuma ◽  
Takuji Kudo

A novel actinomycete strain RY35-68T, isolated from a peat swamp forest soil sample in Rayong Province, Thailand, was characterized using a polyphasic approach. The strain belonged to the genus Actinomadura based on morphological and chemotaxonomic characteristics. Cell-wall analysis revealed the presence of meso-diaminopimelic acid and N-acetylmuramic acid in the peptidoglycan layer. The diagnostic sugar in whole-cell hydrolysates was identified as madurose. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The major cellular fatty acids were C16 : 0 and iso-C16 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannoside. The genomic DNA G+C content was 73.7 mol%. On the basis of 16S rRNA gene sequence similarity analysis, strain RY35-68T was closely related to the species Actinomadura atramentaria JCM 6250T (97.5 %). The value of DNA–DNA relatedness between strain RY35-68T and A. atramentaria JCM 6250T was 37.6–42.6 %. On the basis of its phenotypic characteristics and these results mentioned, this strain could be distinguished from the closely related type strain and represents a novel species of the genus Actinomadura , for which the name Actinomadura rayongensis sp. nov. (type strain RY35-68T = JCM 19830T = TISTR 2211T = PCU 332T) is proposed.


2020 ◽  
Vol 70 (11) ◽  
pp. 5648-5653 ◽  
Author(s):  
Chollachai Klaysubun ◽  
Kenika Lipun ◽  
Kannika Duangmal

A novel actinobacterium, designated strain K10HN5T, was isolated from a peat soil sample collected from Kantulee peat swamp forest, Surat Thani Province, Thailand and its taxonomic position was determined using a polyphasic approach. Strain K10HN5T contained meso-diaminopimelic acid, arabinose, galactose, glucose and ribose in its whole-cell hydrolysates. The predominant menaquinone was MK-8(H4). The major fatty acids were iso-C16 : 0, iso-C15 : 0 and iso-C16 : 1H. Mycolic acids were not present. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylmethylethanolamine, hydroxyphosphatidylethanolamine, hydroxyphosphatidylmethylethanolamine and phosphatidylinositol. The 16S rRNA gene sequence analysis indicated that it was closely related to Pseudonocardia bannensis DSM 45300T (97.9 %) and Pseudonocardia xinjiangensis JCM 11839T (97.9 %). Strain K10HN5T exhibited low average nucleotide identity and digital DNA–DNA hybridization values with P. bannensis DSM 45300T (82.6, 28.7 %) and P. xinjiangensis JCM11839T (76.3, 22.2 %). The DNA G+C content of strain K10HN5T was 72.4 mol%. Based on polyphasic data, strain K10HN5T represents a novel species of the genus Pseudonocardia , for which the name Pseudonocardia acidicola sp. nov. is proposed. The type strain is K10HN5T (=TBRC 10048T=NBRC 113897T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1547-1554 ◽  
Author(s):  
Wee Fei Aaron Teo ◽  
Nantana Srisuk ◽  
Kannika Duangmal

A novel actinobacterial strain, designated K81G1T, was isolated from a soil sample collected in Kantulee peat swamp forest, Surat Thani Province, Thailand, and its taxonomic position was determined using a polyphasic approach. Optimal growth of strain K81G1T occurred at 28–30 °C, at pH 5.0–6.0 and without NaCl. Strain K81G1T had cell-wall chemotype IV (meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and galactose as diagnostic sugars) and phospholipid pattern type II, characteristic of the genus Amycolatopsis . It contained MK-9(H4) as the predominant menaquinone, iso-C16 : 0, C17 : 0 cyclo and C16 : 0 as the major cellular fatty acids, and phospholipids consisting of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylinositol and two unidentified phospholipids. Based on 16S rRNA gene sequence similarity and phylogenetic analyses, strain K81G1T was most closely related to Amycolatopsis rhizosphaerae TBRC 6029T (97.8 % similarity), Amycolatopsis acidiphila JCM 30562T (97.8 %) and Amycolatopsis bartoniae DSM 45807T (97.6 %). Strain K81G1T exhibited low average nucleotide identity and digital DNA–DNA hybridization values with A. rhizosphaerae TBRC 6029T (76.4 %, 23.0 %), A. acidiphila JCM 30562T (77.9 %, 24.6 %) and A. bartoniae DSM 45807T (77.8 %, 24.3 %). The DNA G+C content of strain K81G1T was 69.7 mol%. Based on data from this polyphasic study, strain K81G1T represents a novel species of the genus Amycolatopsis , for which the name Amycolatopsis acidicola sp. nov. is proposed. The type strain is K81G1T (=TBRC 10047T=NBRC 113896T).


2011 ◽  
Vol 61 (5) ◽  
pp. 1176-1181 ◽  
Author(s):  
Apakorn Songsumanus ◽  
Somboon Tanasupawat ◽  
Chitti Thawai ◽  
Khanit Suwanborirux ◽  
Takuji Kudo

A novel actinomycete, strain P0402T, was isolated from peat swamp forest soil collected in Thailand. Its taxonomic position was determined by using a polyphasic taxonomic approach. The chemotaxonomic characteristics of this strain matched those of the genus Micromonospora, i.e. the presence of meso-diaminopimelic acid and N-glycolyl muramic acid in the peptidoglycan, whole-cell sugar pattern D, phospholipid type II, and cellular fatty acid type 3b. Phylogenetic analysis based on 16S rRNA gene sequences revealed a close relationship between strain P0402T and Micromonospora coxensis JCM 13248T (99.0 % similarity), Micromonospora eburnea JCM 12345T (99.0 %), Micromonospora marina JCM 12870T (98.9 %), Micromonospora halophytica JCM 3125T (98.7 %), Micromonospora chalcea JCM 3031T (98.7 %), Micromonospora purpureochromogenes JCM 3156T (98.6 %) and Micromonospora aurantiaca JCM 10878T (98.5 %). It could be clearly distinguished from these type strains based on low levels of DNA–DNA relatedness and phenotypic differences. On the basis of the data presented, strain P0402T is suggested to represent a novel species of the genus Micromonospora, for which the name Micromonospora humi sp. nov. is proposed. The type strain is P0402T ( = JCM 15292T  = PCU 315T  = TISTR 1883T).


2012 ◽  
Vol 62 (Pt_8) ◽  
pp. 2011-2017 ◽  
Author(s):  
Anil Sazak ◽  
Mustafa Camas ◽  
Cathrin Spröer ◽  
Hans-Peter Klenk ◽  
Nevzat Sahin

A novel actinobacterium, strain A8036T, isolated from soil, was investigated by using a polyphasic taxonomic approach. The organism formed extensively branched substrate hyphae that generated spiral chains of spores with irregular surfaces. The cell wall contained meso-diaminopimelic acid (type III) and cell-wall sugars were glucose, madurose, mannose and ribose. The predominant menaquinones were MK-9(H6) and MK-9(H4). The phospholipids were diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major cellular fatty acids were iso-C16 : 0, C17 : 1 cis9, C16 : 0, C15 : 0 and 10-methyl C17 : 0. Based on 16S rRNA gene sequence analysis, the closest phylogenetic neighbours of strain A8036T were Actinomadura meyerae DSM 44715T (99.23 % similarity), Actinomadura bangladeshensis DSM 45347T (98.9 %) and Actinomadura chokoriensis DSM 45346T (98.3 %). However, DNA–DNA relatedness and phenotypic data demonstrated that strain A8036T could be clearly distinguished from the type strains of all closely related Actinomadura species. Strain A8036T is therefore considered to represent a novel species of the genus Actinomadura , for which the name Actinomadura geliboluensis sp. nov. is proposed. The type strain is A8036T ( = DSM 45508T = KCTC 19868T).


Author(s):  
Fenfa Li ◽  
Qingyi Xie ◽  
Shuangqing Zhou ◽  
Fandong Kong ◽  
Yun Xu ◽  
...  

Strain HNM0947T, representing a novel actinobacterium, was isolated from the coral Galaxea astreata collected from the coast of Wenchang, Hainan, China. The strain was found to have morphological and chemotaxonomic characteristics consistent with the genus Nocardiopsis . The organism formed abundant fragmented substrate mycelia and aerial mycelia which differentiated into non-motile, rod-shaped spores. Whole-cell hydrolysates contained meso-diaminopimelic acid and no diagnostic sugars. The major menaquinones were MK-10(H8), MK-10(H6) and MK-10(H4). The major phospholipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylinositol mannosides. The major fatty acids were iso-C16:0, anteiso-C17:0, C18:0, C18:0 10-methyl (TBSA) and anteiso-C15:0. The G+C content was 71.3 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain HNM0947T belonged to the genus Nocardiopsis and shared highest sequence similarity to Nocardiopsis salina YIM 90010T (98.8%), Nocardiopsis xinjiangensis YIM 90004T(98.5%) and Nocardiopsis kunsanensis DSM 44524T (98.3%). The strain HNM0947T was distinguished from its closest type strain by low average nucleotide identity (90.8%) and dDDH values (60.4%) respectively. Based on genotypic, chemotaxonomic and phenotypic characteristics, it was concluded that strain HNM0947T represents a novel species of the genus Nocardiopsis whose name was proposed as Nocardiopsis coralli sp. nov. The type strain was HNM0947T (=CCTCC AA 2020015 T=KCTC 49525 T).


Author(s):  
Hye Su Jung ◽  
Byung Hee Chun ◽  
Hyung Min Kim ◽  
Che Ok Jeon

Two Gram-stain-negative, yellow-pigmented and strictly aerobic bacteria, designated strains SE-s27T and SE-s28T, were isolated from forest soil. Both strains were non-motile rods that were catalase-positive and oxidase-negative and grew optimally at 25–30 °C, pH 8.0 and with 0 % (w/v) NaCl. Strain SE-s28T produced flexirubin-type pigments, but strain SE-s27T did not produce them. Both strains contained menaquinone-6 as the sole respiratory quinone and phosphatidylethanolamine as a major polar lipid. As the major cellular fatty acids (>10 %), SE-s27T contained iso-C15 : 1 and iso-C15 : 1G, whereas SE-s28T contained iso-C15 : 0 and summed feature 3 comprising C16 : 1ω7c and/or C16 : 1ω6c and/or iso-C15 : 0 2-OH. The DNA G+C contents of strains SE-s27T and SE-s28T were 33.1 and 44.3 mol%, respectively. The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that SE-s27T and SE-s28T formed respective distinct phylogenetic lineages within the genus Flavobacterium . Strains SE-s27T and SE-s28T were most closely related to Flavobacterium macrobrachii an-8T and Flavobacterium piscinae ICH-30T with 98.0 and 94.5 % 16S rRNA gene sequence similarities, respectively. In conclusion, strains SE-s27T and SE-s28T represent novel species of the genus Flavobacterium , for which the names Flavobacterium solisilvae sp. nov. and Flavobacterium silvaticum sp. nov. are proposed. The type strains of F. solisilvae and F. silvaticum are SE-s27T (=KACC 18802T=JCM 31544T) and SE-s28T (=KACC 18803T=JCM 31545T), respectively.


2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 1945-1951 ◽  
Author(s):  
Yong-Guang Zhang ◽  
Qing Liu ◽  
Hong-Fei Wang ◽  
Dao-Feng Zhang ◽  
Yuan-Ming Zhang ◽  
...  

A facultatively alkaliphilic actinomycete strain, designated EGI 80088T, was isolated from a saline-alkali soil sample from Xinjiang province, north-west China, and subjected to a polyphasic taxonomic characterization. Strain EGI 80088T formed fragmented aerial hyphae and short spore chains, and rod-like spores aggregated at maturity. Whole-cell hydrolysates of the isolate contained ll-diaminopimelic acid as the diagnostic diamino acid, and glucosamine, mannose, galactose, glucose and rhamnose as the marker sugars. The major fatty acids identified (>5 %) were anteiso-C15 : 0, iso-C15 : 0, summed feature 4 (iso-C17 : 1I/anteiso-C17 : 1B), iso-C16 : 0 and anteiso-C17 : 0. The predominant menaquinone was MK-9(H4). The G+C content of the genomic DNA of strain EGI 80088T was 70.6 mol%. EGI 80088T showed the highest 16S rRNA gene sequence similarity to its closest phylogenetic neighbour Haloactinopolyspora alba YIM 93246T (98.5 %). The DNA–DNA relatedness value of the strain EGI 80088T and H. alba YIM 93246T was 59.3±5.2 %. On the basis of morphological, chemotaxonomic and phylogenetic characteristics and DNA–DNA hybridization data, strain EGI 80088T represents a novel species of the genus Haloactinopolyspora , for which the name Haloactinopolyspora alkaliphila sp. nov. (type strain EGI 80088T = BCRC 16946T = JCM 19128T) is proposed. The description of the genus Haloactinopolyspora has also been emended.


2020 ◽  
Vol 70 (4) ◽  
pp. 2186-2193 ◽  
Author(s):  
Mareike Wenning ◽  
Franziska Breitenwieser ◽  
Christopher Huptas ◽  
Etienne Doll ◽  
Benedikt Bächler ◽  
...  

Eight facultatively anaerobic rod-shaped bacteria were isolated from raw milk and two other dairy products. Results of phylogenetic analyses based on 16S rRNA gene sequences showed that the isolates are placed in a distinct lineage within the family Propionibacteriaceae with Propioniciclava sinopodophylli and Propioniciclava tarda as the closest relatives (94.6 and 93.5 % similarity, respectively). The cell-wall peptidoglycan contained meso-diaminopimelic acid, alanine and glutamic acid and was of the A1γ type (meso-DAP-direct). The major cellular fatty acid was anteiso-C15 : 0 and the major polar lipids were diphosphatidylglycerol, phosphatidyglycerol and three unidentified glycolipids. The quinone system contained predominantly menaquinone MK-9(H4). The G+C content of the genomic DNA of strain VG341T was 67.7 mol%. The whole-cell sugar pattern contained ribose, rhamnose, arabinose and galactose. On the basis of phenotypic and genetic data, eight strains (VG341T, WS4684, WS4769, WS 4882, WS4883, WS4901, WS4902 and WS4904) are proposed to be classified as members of a novel species in a new genus of the family Propionibacteriaceae , for which the name Brevilactibacter flavus gen. nov., sp. nov. is proposed. The type strain is VG341T (=WS4900T=DSM 100885T=LMG 29089T) and seven additional strains are WS4684, WS4769, WS4882, WS4883, WS4901, WS4902 and WS4904. Furthermore, we propose the reclassification of P. sinopodophylli as Brevilactibacter sinopodophylli comb. nov.


Sign in / Sign up

Export Citation Format

Share Document