Salinimicrobium sediminis sp. nov., isolated from a deep-sea sediment

2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 984-988 ◽  
Author(s):  
Y. Subhash ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Strain JC207T was isolated from a deep (265 m) sea sediment, and appeared as dark yellow colonies on agar plates with cells staining Gram-negative. Catalase, oxidase and caseinase were positive, while chitinase, gelatinase and amylase were negative. Major (>5 %) fatty acids were iso-C15 : 0, anteiso-C15 : 0, iso-C17 : 1ω9c, iso-C16 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH, iso-C14 : 0 and iso-C15 : 1G. Strain JC207T contained phosphatidylethanolamine as the major polar lipid, with minor amounts of five unidentified lipids. A bacterial hopane derivative, diplopterol and adenosylhopane were the major hopanoids. Genomic DNA G+C content was 47.5 mol%. 16S rRNA gene sequence comparisons indicated that strain JC207T represented a member of the genus Salinimicrobium within the family Flavobacteriaceae of the phylum Bacteroidetes . Strain JC207T had sequence similarity with Salinimicrobium terrae YIM-C338T (98 %), Salinimicrobium xinjiangense BH206T (97.6 %) and other members of the genus Salinimicrobium (<96.8 %). However, strain JC207T showed an average of 23.6±4 and 37±4 relatedness (based on DNA–DNA hybridization) with Salinimicrobium terrae CGMCC 1.6308T ( = YIM-C338T) and Salinimicrobium xinjiangense KCTC 12883T ( = BH206T), respectively. Morphological, physiological and genotypic differences from the previously described taxa support the classification of strain JC207T as a representative of a novel species in the genus Salinimicrobium , for which the name Salinimicrobium sediminis sp. nov. is proposed. The type strain is JC207T ( = KCTC 32444T = CGMCC 1.12641T).

2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 1006-1011 ◽  
Author(s):  
Y. Subhash ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two strains of bacteria, JC213T and JC215T, were isolated from desert soil. Colonies were red to pink and cells Gram-stain-negative. Both strains were oxidase- and catalase-positive and hydrolysed casein. In both strains, phosphatidylethanolamine was the major polar lipid, iso-C15 : 0 was the major fatty acid and the bacteriohopane derivative, BHD1, was the major hopanoid. The genomic DNA G+C contents of strains JC213T and JC215T were 52.7 and 46.3 mol%, respectively. 16S rRNA gene sequence comparisons indicated that both strains belong to the genus Pontibacter within the family Cytophagaceae and the phylum Bacteroidetes . Strain JC213T showed the highest sequence similarity to Pontibacter populi HLY7-15T (96.6 %) and with other species of the genus Pontibacter sequence similarity was less than 96 %. Strain JC215T exhibited highest sequence similarity with Pontibacter lucknowensis DM9T (95.1 %) and shared 95 % or less sequence similarity with other species of the genus Pontibacter . The sequence similarity between strains JC213T and JC215T was 95.8 %. Distinct morphological, physiological and genotypic differences from previously described taxa support JC213T and JC215T being representatives of two novel species of the genus Pontibacter , for which the names Pontibacter ruber sp. nov. and Pontibacter deserti sp. nov. are proposed and the type strains are JC213T ( = KCTC 32442T = LMG 27669T) and JC215T ( = KCTC 32443T = LMG 27670T), respectively.


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1580-1586 ◽  
Author(s):  
Y. Subhash ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Two bacterial strains (JC167T and JC168) were isolated from a soil sample collected from Mandpam, Tamilnadu, India. Colonies of both strains were orange and cells Gram-stain-positive. Cells were small rods, and formed terminal endospores of ellipsoidal to oval shape. Both strains were positive for catalase, oxidase and hydrolysis of starch/gelatin, and negative for chitin hydrolysis, H2S production, indole production and nitrate reduction activity. Major fatty acids of both strains (>5 %) were anteiso-C15 : 0, iso-C16 : 0, iso-C15 : 0, anteiso-C17 : 0, iso-C14 : 0 and C16 : 0 with minor (<5 but >1 %) amounts of iso-C17 : 0, anteiso-C17 : 0 B/iso-C17 : 0 I and C16 : 1ω11c. Diphosphatydilglycerol, phosphatidylethanolamine and phosphatidylglycerol were the major polar lipids of both strains. Cell wall amino acids were l-alanine, d-alanine, d-glutamic acid and meso-diaminopimelic acid. β-Carotene and five unidentified carotenoids were present in both strains. Mean genomic DNA G+C content was 53.4±1 mol% and the two strains were closely related (mean DNA–DNA hybridization >90 %). 16S rRNA gene sequence comparisons of both strains indicated that they represent species of the genus Bacillus within the family Bacillaceae of the phylum Firmicutes . Both strains had a sequence similarity of 97.6 % with Bacillus saliphilus 6AGT and <96.8 % with other members of the genus Bacillus . Sequence similarity between strain JC167T and 168 was 100 %. Strain JC167T showed 25.8±1 % reassociation (based on DNA–DNA hybridization) with B. saliphilus DSM 15402T ( = 6AGT). Distinct morphological, physiological and genotypic differences from previously described taxa support the classification of strain JC167T as a representative of a novel species of the genus Bacillus , for which the name Bacillus luteus sp. nov. is proposed. The type strain is JC167T ( = KCTC 33100T = LMG 27257T).


2020 ◽  
Vol 70 (9) ◽  
pp. 4903-4907 ◽  
Author(s):  
Hien T.T. Ngo ◽  
HongYong Kim ◽  
Huan Trinh ◽  
Tae-Hoo Yi

A Gram-stain-negative, facultative anaerobic, motile, short rods and yellow-pigmented bacterium, designated strain THG-DN7.12T, was isolated from water collected at Jungwon waterfall on Yongmun mountain, Republic of Korea. According to 16S rRNA gene sequence comparisons, strain THG-DN7.12T was found to be most closely related to Aquitalea denitrificans 5YN1-3T (98.9 % sequence similarity), Aquitalea magnusonii TRO-001DR8T (98.7 %) and Aquitalea pelogenes P1297T (98.0 %). The DNA–DNA relatedness between strain THG-DN7.12T and its phylogenetically closest neighbours was below 70.0 %. The strain's DNA G+C content was 59.7 mol%. The major polar lipid was found to be phosphatidylethanolamine. Summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and C16 : 0 were identified as the major fatty acids. Ubiquinone Q-8 was detected as the only respiratory quinone. These data supported the affiliation of strain THG-DN7.12T to the genus Aquitalea . Strain THG-DN7.12T was distinguished from related Aquitalea species by physiological and biochemical tests. Therefore, the novel isolate represents a novel species, for which the name Aquitalea aquatilis sp. nov. is proposed, with THG-DN7.12T as the type strain (=KACC 18847T=CCTCC AB 2016185T).


2014 ◽  
Vol 64 (Pt_7) ◽  
pp. 2238-2243 ◽  
Author(s):  
Y. Subhash ◽  
Ch. Sasikala ◽  
Ch. V. Ramana

Strain JC216T was isolated from a contaminated Petri dish. Colonies were of pale yellow colour and cells were Gram-stain-negative, oxidase-positive and catalase-positive. Chitin, starch and gelatin were not hydrolysed. Strain JC216T contained C18 : 1ω7c/C18 : 1ω6c, C16 : 1ω7c/C16 : 1ω6c, C14 : 0 2-OH and C16 : 0 as the major (≥8 %) fatty acids with minor amounts of C12 : 0, C15 : 0 2-OH, C16 : 0 2-OH, C16  : 1 2-OH, C17 : 1ω6c, C17 : 1ω8c and C17 : 1ω9c. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid were the major polar lipids. Minor amounts of unidentified amino lipids and unidentified lipids were also detected. The major hopanoids identified were bacterial hopane derivatives and diplopterol. Minor amounts of diploptene and an unidentified hopanoid were also present. Spermidine was the major polyamine with minor amounts of sym-homospermidine and putrescine. N-Acetylglucosamine and fructose were identified as major cell-wall sugars along with minor amounts of mannose and galactose. The genomic DNA G+C content was 55 mol%. Comparisons of the16S rRNA gene sequence indicated that strain JC216T represents a member of the genus Sphingopyxis in the family Sphingomonadaceae within the class Alphaproteobacteria . Strain JC216T had a sequence similarity of 97.28 % with Sphingopyxis wooponensis 03SU3-PT and <96.71 % with other members of the family Sphingomonadaceae . Furthermore, strain JC216T had 33±1 % relatedness (based on DNA–DNA hybridization) with S. wooponensis KCTC 23340T ( = 03SU3-PT). Distinct morphological, physiological and genotypic differences from the previously described taxa support the classification of strain JC216T as a representative of a novel species in the genus Sphingopyxis , for which the name Sphingopyxis contaminans sp. nov. is proposed. The type strain is JC216T ( = KCTC 32445T = LMG 27671T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5473-5478 ◽  
Author(s):  
Jin-Yu Zhang ◽  
Xiao-Bing Jiang ◽  
Di Zhu ◽  
Xiao-Man Wang ◽  
Zong-Jun Du ◽  
...  

A Gram-stain-negative, non-motile, coccus-shaped, catalase- and oxidase-positive, facultatively anaerobic and pink-pigmented bacterium, designated strain CQN31T, was isolated from sediment of Changqiaohai Lake, Yunnan Province, China. Growth occurred at 4–45 °C (optimum, 37 °C), at pH 6.5–9.5 (optimum, pH 8.0) and with 0–1 % (w/v) NaCl (optimum, 0 %). C18 : 1 ω7c/C18 : 1 ω6c and C16 : 0 were the predominant fatty acids. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidyldimethylethanolamine (PME) and one unidentified aminolipid (AL) were the major polar lipids. The G+C content of the genomic DNA was 71.5 %. 16S rRNA gene sequence comparisons indicated that strain CQN31T shared 96.8 % similarity with Roseomonas wooponensis JCM 19527T and 95.9 % with R. terricola EM0302T. Digital DNA–DNA hybridization values between strain CQN31T and Roseomonas stagni DSM 19981T, R. rosea DSM 14916T and R. mucosa NCTC 13291T were 21.0, 19.4 and 19.8 %, respectively. Average amino acid identity and average nucleotide identity values between strain CQN31T and R. stagni DSM 19981T, R. rosea DSM 14916T and R. mucosa NCTC 13291T were 73.7, 63.4 and 61.9 %, and 79.2, 77.1 and 77.5%, respectively. Distinct morphological, physiological and genotypic differences from previously described taxa support the classification of strain CQN31T as a representative of a novel species in the genus Roseomonas , for which the name Roseomonas bella sp. nov. is proposed. The type strain is CQN31T (=KCTC 62447T=MCCC 1H00309T).


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2565-2569 ◽  
Author(s):  
Cynthia Alias-Villegas ◽  
Valme Jurado ◽  
Leonila Laiz ◽  
Cesareo Saiz-Jimenez

A Gram-stain-negative, aerobic, motile, rod-shaped bacterium, strain SC13E-S71T, was isolated from tuff, volcanic rock, where the Roman catacombs of Saint Callixtus in Rome, Italy, was excavated. Analysis of 16S rRNA gene sequences revealed that strain SC13E-S71T belongs to the genus Sphingopyxis , and that it shows the greatest sequence similarity with Sphingopyxis chilensis DSM 14889T (98.72 %), Sphingopyxis taejonensis DSM 15583T (98.65 %), Sphingopyxis ginsengisoli LMG 23390T (98.16 %), Sphingopyxis panaciterrae KCTC 12580T (98.09 %), Sphingopyxis alaskensis DSM 13593T (98.09 %), Sphingopyxis witflariensis DSM 14551T (98.09 %), Sphingopyxis bauzanensis DSM 22271T (98.02 %), Sphingopyxis granuli KCTC 12209T (97.73 %), Sphingopyxis macrogoltabida KACC 10927T (97.49 %), Sphingopyxis ummariensis DSM 24316T (97.37 %) and Sphingopyxis panaciterrulae KCTC 22112T (97.09 %). The predominant fatty acids were C18 : 1ω7c, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), C14 : 0 2-OH and C16 : 0. The predominant menaquinone was MK-10. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine and sphingoglycolipid. These chemotaxonomic data are common to members of the genus Sphingopyxis . However, a polyphasic approach using physiological tests, DNA base ratios, DNA–DNA hybridization and 16S rRNA gene sequence comparisons showed that the isolate SC13E-S71T belongs to a novel species within the genus Sphingopyxis , for which the name Sphingopyxis italica sp. nov. is proposed. The type strain is SC13E-S71T ( = DSM 25229T = CECT 8016T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2879-2887 ◽  
Author(s):  
Dong Han ◽  
Heng-Lin Cui

A novel Gram-stain-negative, aerobic and rod-shaped halophilic archaeon, designated HD8-45T, was isolated from the red brine of salted brown alga Laminaria produced at Dalian, PR China. According to the results of 16S rRNA gene and rpoB′ gene sequence comparisons, strain HD8-45T showed the highest sequence similarity to the corresponding genes of Salinirussus salinus YGH44T (95.1 and 85.2 % similarities, respectively), Halovenus aranensis EB27T (91.2 and 86.0 % similarities, respectively). The low sequence similarity and the phylogeny implied the novel generic status of strain HD8-45T. Genomic relatedness analyses showed that strain HD8-45T were clearly distinguished from other species in the order Halobacteriales , with average nucleotide identity, amino acid identity and in silico DNA–DNA hybridization values not more than 75.1, 65.6 and 21.5 %. The polar lipid pattern contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two major glycolipids and two minor glycolipids. The two major glycolipids and a minor glycolipid were chromatographically identical to disulfated mannosyl glucosyl diether, sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. The major respiratory quinones were menaquinone MK-8 and MK-8(H2). The DNA G+C content was 62.0 mol% (Tm ) and 61.9 mol% (genome). All these results showed that strain HD8-45T represents a novel species of a new genus in the order Halobacteriales , for which the name Salinibaculum litoreum gen. nov., sp. nov. is proposed. The type strain of Salinibaculum litoreum is HD8-45T (=CGMCC 1.15328T=JCM 31107T).


Author(s):  
Hai-zhen Zhou ◽  
Jian Zhang ◽  
Qing-lei Sun

In this study, we reported a Gram-stain-negative, orange-coloured, rod-shaped, motile and faculatively anaerobic bacterium named strain PB63T, which was isolated from the deep-sea sediment from the Mariana Trench. Growth of PB63T occurred at 10–35 °C (optimum, 28 °C), pH 5.0–8.0 (optimum, 5.0–6.0) and with 0–7 % (w/v) NaCl (optimum, 2–3 %). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that PB63T represented a member of the genus Novosphingopyxis and was closely related to Novosphingopyxis baekryungensis DSM 16222T (97.9 % sequence similarity). PB63T showed tolerance to a variety of heavy metals, including Co2+, Zn2+, Mn2+ and Cu2+. The complete genome of PB63T was obtained, and many genes involved in heavy metal resistance were found. The genomic DNA G+C content of PB63T was 62.8 mol%. The predominant respiratory quinone of PB63T was ubiquinone-10 (Q-10). The polar lipids of PB63T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, glycolipid, phosphatidylcholines and three unidentified lipids. The major fatty acids of PB63T included summed feature 8 (C18 : 1ω7c or/and C18 : 1ω6c), C14 : 0 2-OH, 11-methyl C18 : 1ω7c, C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C17 : 1ω6c. The results of phylogenetic, physiological, biochemical and morphological analyses indicated that strain PB63T represents a novel species of the genus Novosphingopyxis , and the name Novosphingopyxis iocasae sp. nov. is proposed with the type species PB63T (=CCTCC AB 2019195T=JCM 34178T).


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3478-3484 ◽  
Author(s):  
Lars Ganzert ◽  
Janosch Schirmack ◽  
Mashal Alawi ◽  
Kai Mangelsdorf ◽  
Wolfgang Sand ◽  
...  

A novel methanogenic archaeon, strain MC-15T, was isolated from a floating biofilm on a sulphurous subsurface lake in Movile Cave (Mangalia, Romania). Cells were non-motile sarcina-like cocci with a diameter of 2–4 µm, occurring in aggregates. The strain was able to grow autotrophically on H2/CO2. Additionally, acetate, methanol, monomethylamine, dimethylamine and trimethylamine were utilized, but not formate or dimethyl sulfide. Trypticase peptone and yeast extract were not required for growth. Optimal growth was observed at 33 °C, pH 6.5 and a salt concentration of 0.05 M NaCl. The predominant membrane lipids of MC-15T were archaeol and hydroxyarchaeol phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol as well as hydroxyarchaeol phosphatidylserine and archaeol glycosaminyl phosphatidylinositol. The closely related species, Methanosarcina vacuolata and Methanosarcina horonobensis, had a similar composition of major membrane lipids to strain MC-15T. The 16S rRNA gene sequence of strain MC-15T was similar to those of Methanosarcina vacuolata DSM 1232T (sequence similarity 99.3 %), Methanosarcina horonobensis HB-1T (98.8 %), Methanosarcina barkeri DSM 800T (98.7 %) and Methanosarcina siciliae T4/MT (98.4 %). DNA–DNA hybridization revealed 43.3 % relatedness between strain MC-15T and Methanosarcina vacuolata DSM 1232T. The G+C content of the genomic DNA was 39.0 mol%. Based on physiological, phenotypic and genotypic differences, strain MC-15T represents a novel species of the genus Methanosarcina , for which the name Methanosarcina spelaei sp. nov. is proposed. The type strain is MC-15T ( = DSM 26047T = JCM 18469T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 668-674 ◽  
Author(s):  
Xiaoyang Fan ◽  
Tong Yu ◽  
Zhao Li ◽  
Xiao-Hua Zhang

Three Gram-stain-negative, strictly aerobic, rod-shaped with single polar flagellum, yellow-pigmented bacteria, designated strains XH031T, XH038-3 and XH80-1, were isolated from deep-sea sediment of the South Pacific Gyre (41° 51′ S 153° 6′ W) during the Integrated Ocean Drilling Program (IODP) Expedition 329. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolates belonged to the genus Luteimonas and showed the highest 16S rRNA gene sequence similarity with Luteimonas aestuarii B9T (96.95 %), Luteimonas huabeiensis HB2T (96.93 %) and Xanthomonas cucurbitae LMG 690T (96.92 %). The DNA G+C contents of the three isolates were 70.2–73.9 mol%. The major fatty acids were iso-C15 : 0, iso-C16 : 0, iso-C11 : 0 and C16 : 010-methyl and/or iso-C17 : 1ω9c. The major respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and one unknown phospholipid. On the basis of data from polyphasic analysis, the three isolates represent a novel species of the genus Luteimonas , for which the name Luteimonas abyssi sp. nov. is proposed. The type strain is XH031T ( = DSM 25880T = CGMCC 1.12611T).


Sign in / Sign up

Export Citation Format

Share Document