scholarly journals Ulvibacter marinus sp. nov., isolated from coastal seawater

2014 ◽  
Vol 64 (Pt_6) ◽  
pp. 2041-2046 ◽  
Author(s):  
Kiwoon Baek ◽  
Hwanhui Jo ◽  
Ahyoung Choi ◽  
Ilnam Kang ◽  
Jang-Cheon Cho

A Gram-stain-negative, aerobic, chemoheterotrophic, yellow, non-motile and flexirubin-positive bacterium, designated strain IMCC12008T, was isolated from coastal seawater of the Yellow Sea and subjected to polyphasic taxonomy. Optimal growth was observed at 25 °C, pH 7.0 and in the presence of 2 % (w/v) NaCl. Based on 16S rRNA gene sequence analysis and subsequent phylogenetic analyses, strain IMCC12008T belonged to the genus Ulvibacter of the family Flavobacteriaceae , with Ulvibacter antarcticus IMCC3101T (96.0 %) and Ulvibacter litoralis KMM 3912T (95.8 %) having the highest sequence similaries. The major fatty acids were iso-C15 : 0 (26.2 %) and iso-C15 : 1 G (10.5 %). The DNA G+C content was 38.1 mol%. Strain IMCC12008T contained menaquinone-6 (MK-6) as the respiratory quinone, and polar lipids comprising phosphatidylethanolamine, two unidentified aminolipids and an unknown aminophospholipid. On the basis of data collected from this study, strain IMCC12008T ( = NBRC 109484T = KCTC 32322T) represents a novel species of the genus Ulvibacter , for which the name Ulvibacter marinus sp. nov. is proposed.

2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1105-1110 ◽  
Author(s):  
Sung-Hyun Yang ◽  
Hyun-Seok Seo ◽  
Hyun-Myung Oh ◽  
Sang-Jin Kim ◽  
Jung-Hyun Lee ◽  
...  

A Gram-stain-negative, aerobic, rod-shaped, non-motile and orange-coloured marine bacterium, YH207T, was isolated from a tidal flat at Yeongheung-do on the coast of the Yellow Sea, Korea. 16S rRNA gene sequence analysis revealed that strain YH207T was affiliated with the family Cryomorphaceae and showed highest similarity to Brumimicrobium glaciale IC156T (95.4 %). Growth was observed at 11–36 °C, at pH 6.5–10.0 and with 0.4–7.0 % NaCl. The predominant cellular fatty acids when grown at 20 °C were iso-C15 : 0 (44.2 %), iso-C15 : 1 G (34.3 %), iso-C17 : 0 3-OH (8.7 %) and summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c; 2.3 %). The major respiratory quinone was MK-6. Phosphatidylethanolamine, phosphatidylglycerol, three unidentified lipids, three unidentified aminophospholipids, one unidentified phospholipid, four unidentified aminolipids and three unidentified glycolipids were identified as major polar lipids. The DNA G+C content was 34.3 mol%. On the basis of the data from our polyphasic taxonomic study, strain YH207T should be classified in a novel species in the genus Brumimicrobium , for which the name Brumimicrobium mesophilum sp. nov. is proposed. The type strain is YH207T ( = KCCM 42331T  = JCM 14063T). Emended descriptions of the genus Brumimicrobium and Brumimicrobium glaciale Bowman et al. 2003 are also given.


2013 ◽  
Vol 63 (Pt_6) ◽  
pp. 2265-2269 ◽  
Author(s):  
Sung-Hyun Yang ◽  
Hyun-Seok Seo ◽  
Jung-Hyun Lee ◽  
Sang-Jin Kim ◽  
Kae Kyoung Kwon

A Gram-negative, facultatively anaerobic, rod-shaped (2.04–1.27×0.95–1.25 µm) and motile marine bacterium, designated MEBiC06500T was isolated from sediment collected at Daebu Island in the Yellow Sea (37° 20′ N 126° 41′ E), Korea. 16S rRNA gene sequence analysis revealed that strain MEBiC06500T showed high similarity with Paramoritella alkaliphila A3F-7T (96.5 %). Growth was observed at 10.5–30.2 °C (optimum 23.5 °C), at pH 6.0–9.5 (optimum 8.0) and with 0–5 % (optimum 1.5 %) NaCl. The predominant cellular fatty acids were C14 : 0, C16 : 0, C18 : 1ω7c and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c). The DNA G+C content was 56.0 mol%. The respiratory quinone is Q-8. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, four unidentified lipids, one unidentified phospholipid and three unidentified aminolipids were detected as major polar lipids. On the basis of this polyphasic taxonomic data, strain MEBiC06500T should be classified as a representative of a novel species in the genus Paramoritella , and the proposed name is Paramoritella sediminis sp. nov. The type strain is MEBiC06500T ( = KCCM 42977T = JCM 18292T). Emended descriptions of the genus Paramoritella Hosoya et al. 2009 and Paramoritella alkaliphila are also given.


2014 ◽  
Vol 64 (Pt_1) ◽  
pp. 78-82 ◽  
Author(s):  
Taeyang Kwon ◽  
Kiwoon Baek ◽  
Kiyoung Lee ◽  
Ilnam Kang ◽  
Jang-Cheon Cho

A Gram-staining-negative, chemoheterotrophic, yellow-pigmented, gliding, catalase- and oxidase-positive, flexirubin-negative, strictly aerobic bacterium, designated strain IMCC9485T, was isolated from a seawater sample collected from the Arctic Ocean. Optimal growth of strain IMCC9485T was observed at 25 °C, pH 7–8 and in the presence of 1.5–2.5 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain IMCC9485T belonged to the genus Formosa and was closely related to Formosa algae KCTC 12364T (98.2 %) and Formosa agariphila KCTC 12365T (98.0 %). DNA–DNA relatedness between the new isolate and F. algae and F. agariphila was far lower than 70 %, which indicated that strain IMCC9485T is a novel genomic species of the genus Formosa . The major fatty acids (>10 %) were iso-C15 : 1G (13.7 %), C16 : 1ω7c and/or C16 : 1ω6c (13.4 %) and iso-C15 : 0 (12.3 %). The G+C content of the genomic DNA was 37.6 mol%. Strain IMCC9485T contained menaquinone-6 (MK-6) as the respiratory quinone and phosphatidylethanolamine, unknown aminophospholipids and unknown polar lipids as polar lipid constituents. On the basis of phylogenetic analyses and differential phenotypic characteristics, it is suggested that strain IMCC9485T ( = KACC 17484T = KCCM 42937T = NBRC 106080T) be assigned to the genus Formosa as the type strain of a novel species, for which the name Formosa arctica sp. nov. is proposed.


2020 ◽  
Vol 70 (3) ◽  
pp. 2016-2025 ◽  
Author(s):  
María J. Medina-Pascual ◽  
Sara Monzón ◽  
Pilar Villalón ◽  
Isabel Cuesta ◽  
Fernando González-Romo ◽  
...  

The taxonomic position of an unknown bacterial strain designated CNM695-12, isolated from the blood of an immunocompromised subject, was investigated via phenotypic, chemotaxonomic, genotypic and genomic analyses. Bacterial cells were determined to be Gram-stain-negative bacilli, aerobic, non-motile and non-spore-forming. The strain showed catalase activity but no oxidase activity. Optimal growth occurred at 37 °C, pH 7 and with 0–1 % NaCl. C16 : 0, summed feature 8 (comprising C18 : 1ω7c /C18:1 ω6c), and C18 : 1ω9c were the most abundant fatty acids, and ubiquinone 8 was the major respiratory quinone. The polar lipids present included phosphatidylglycerol, phosphatidylethanolamine and other aminophospholipids. The 16S rRNA gene sequence showed approximately 93.5 % similarity to those of different species with validly published names within the order Burkholderiales (e.g. Leptothrix mobilis Feox-1T, Aquabacterium commune B8T , Aquabacterium citratiphilum B4T and Schlegelella thermodepolymerans K14T). Phylogenetic analyses based on 16S rRNA gene sequences and concatenated alignments including the sequences for 107 essential proteins, revealed the strain to form a novel lineage close to members of the family Comamonadaceae . The highest average nucleotide identity and average amino acid identity values were obtained with Schlegelella thermodepolymerans K14T (69.6 and 55.7 % respectively). The genome, with a size of 3.35 Mb, had a DNA G+C content of 52.4 mol% and encoded 3056 predicted genes, 3 rRNA, 1 transfer–messengerRNA and 51 tRNA. Strain CNM695-12 thus represents a novel species belonging to a novel genus within the order Burkholderiales , for which the name Saezia sanguinis gen. nov., sp. nov. is proposed. The type strain is CNM695-12T (=DSM 104959T=CECT 9208T).


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2424-2429 ◽  
Author(s):  
Na-Ri Shin ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
Bora Yun ◽  
Tae Woong Whon ◽  
...  

A novel Gram-negative, obligately aerobic, non-motile, rod-shaped bacterium, strain M97T, was isolated from marine sediment of a cage-cultured ark clam farm on the south coast of Korea. Strain M97T was positive for oxidase and catalase. Optimal growth occurred at 37 °C, with 1–2 % (w/v) NaCl and at pH 7–8. The main cellular fatty acids were C16 : 0, C18 : 1ω7c, C12 : 0 3-OH and cyclo-C19 : 0ω8c. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, an unknown aminolipid and three unknown lipids. The predominant respiratory quinone was ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain M97T belongs to the genus Tropicimonas , with highest sequence similarity to Tropicimonas aquimaris DPG-21T (99.0 %). The DNA G+C content of strain M97T was 68.5 mol%. Mean DNA–DNA relatedness between strain M97T and T. aquimaris DPG-21T was 46±10 %. Based on phylogenetic, phenotypic and genotypic analyses, strain M97T is considered to represent a novel species of the genus Tropicimonas , for which the name Tropicimonas sediminicola sp. nov. is proposed. The type strain is M97T ( = KACC 15544T = JCM 17731T).


Author(s):  
Shan Jiang ◽  
Feng-Bai Lian ◽  
You-Yang Sun ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3–0.4 µm wide, 2.0–2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4–40 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.5–8.0) and at NaCl concentrations of 1.0–10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1  ω7c / C18 : 1  ω6c; 60.7 %), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9–95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2–80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae . Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner–Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae , for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5943-5949 ◽  
Author(s):  
Yun-zhen Yang ◽  
Ji-feng Chen ◽  
Wan-ru Huang ◽  
Ran-ran Zhang ◽  
Shuangjiang Liu ◽  
...  

A novel Gram-stain-negative, strictly aerobic, rod-shaped, brick red-pigmented bacterium, designated R-22-1 c-1T, was isolated from water from Baiyang Lake, Hebei Province, PR China. The strain was able to grow at 20–30 °C (optimum, 30 °C) and pH 6–7 (optimum, pH 6) in Reasoner’s 2A medium. 16S rRNA gene sequence and phylogenetic analyses of R-22-1 c-1T revealed closest relationships to Rufibacter immobilis MCC P1T (97.8 %), Rufibacter sediminis H-1T (97.9 %) and Rufibacter glacialis MDT1-10-3T (97.0 %), with other species of the genus Rufibacter showing less than 97.0 % sequence similarity. The predominant polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids and three unidentified lipids. The major cellular fatty acids were iso-C15 : 0, C15 : 1  ω6c, C17 : 1  ω6c, anteiso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1  ω7c and/or C16 : 1  ω6c) and summed feature 4 (iso-C17 : 1I and/or anteiso-C17 : 1B). The respiratory quinone was MK-7. The draft genome of R-22-1 c-1T was 5.6 Mbp in size, with a G+C content of 50.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization relatedness values between strain R-22-1 c-1T and related type strains were R. immobilis MCC P1T (77.2 and 21.8 %), R. sediminis H-1T (81.6 and 21.4 %) and R. tibetensis 1351T (78.5 and 22.9 %). Based on these phylogenetic, chemotaxonomic and genotypic results, strain R-22-1 c-1T represents a novel species in the genus Rufibacter , for which the name Rufibacter latericius sp. nov. is proposed. The type strain is R-22-1 c-1T (=CGMCC 1.13570T=KCTC 62781T).


Author(s):  
Renju Liu ◽  
Qiliang Lai ◽  
Li Gu ◽  
Peisheng Yan ◽  
Zongze Shao

A novel Gram-stain-negative, aerobic, gliding, rod-shaped and carotenoid-pigmented bacterium, designated A20-9T, was isolated from a microbial consortium of polyethylene terephthalate enriched from a deep-sea sediment sample from the Western Pacific. Growth was observed at salinities of 1–8 %, at pH 6.5–8 and at temperatures of 10–40 °C. The results of phylogenetic analyses based on the genome indicated that A20-9T formed a monophyletic branch affiliated to the family Schleiferiaceae , and the 16S rRNA gene sequences exhibited the maximum sequence similarity of 93.8 % with Owenweeksia hongkongensis DSM 17368T, followed by similarities of 90.4, 90.1 and 88.8 % with Phaeocystidibacter luteus MCCC 1F01079T, Vicingus serpentipes DSM 103558T and Salibacter halophilus MCCC 1K02288T, respectively. Its complete genome size was 4 035 598 bp, the genomic DNA G+C content was 43.2 mol%. Whole genome comparisons indicated that A20-9T and O. hongkongensis DSM 17368T shared 67.8 % average nucleotide identity, 62.7 % average amino acid identity value, 46.6% of conserved proteins and 17.8 % digital DNA–DNA hybridization identity. A20-9T contained MK-7 as the major respiratory quinone. Its major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phospatidylcholine; and the major fatty acids were iso-C15 : 0 (37.5 %), iso-C16 : 0 3-OH (12.4 %), and summed feature 3 (C16 : 1ω7c /C16 : 1ω6c, 11.6 %). Combining the genotypic and phenotypic data, A20-9T could be distinguished from the members of other genera within the family Schleiferiaceae and represents a novel genus, for which the name Croceimicrobium hydrocarbonivorans gen. nov., sp. nov. is proposed. The type strain is A20-9T (=MCCC 1A17358T =KCTC 72878T).


Author(s):  
Angéline Antezack ◽  
Manon Boxberger ◽  
Mariem Ben Khedher ◽  
Bernard La Scola ◽  
Virginie Monnet-Corti

A Gram-stain-negative bacterium, designated strain Marseille-Q3039T, was isolated from subgingival dental plaque of a woman with gingivitis in Marseille, France. Strain Marseille-Q3039T was found to be an anaerobic, motile and spore-forming crescent-shaped bacterium that grew at 25–41.5 °C (optimum, 37 °C), pH 5.5–8.5 (optimum, pH 7.5) and salinity of 5.0 g l−1 NaCl. The results of 16S rRNA gene sequence analysis revealed that strain Marseille-Q3039T was closely related to Selenomonas infelix ATCC 43532T (98.42 % similarity), Selenomonas dianae ATCC 43527T (97.25 %) and Centipedia periodontii DSM 2778T (97.19 %). The orthologous average nucleotide identity and digital DNA–DNA hybridization relatedness between strain Q3039T and its closest phylogenetic neighbours were respectively 84.57 and 28.2 % for S. infelix ATCC 43532T and 83.93 and 27.2 % for C. periodontii DSM 2778T. The major fatty acids were identified as C13 : 0 (27.7 %), C15 : 0 (24.4 %) and specific C13 : 0 3-OH (12.3 %). Genome sequencing revealed a genome size of 2 351 779 bp and a G+C content of 57.2 mol%. On the basis of the results from phenotypic, chemotaxonomic, genomic and phylogenetic analyses and data, we concluded that strain Marseille-Q3039T represents a novel species of the genus Selenomonas , for which the name Selenomonas timonae sp. nov. is proposed (=CSUR Q3039=CECT 30128).


Author(s):  
Xiao-Xian Huang ◽  
Jia Shang ◽  
Lian Xu ◽  
Rui Yang ◽  
Ji-Quan Sun

A Gram-stain-negative, non-motile, rod-shaped bacterial strain, named SJ-16T, was isolated from desert soil collected in Inner Mongolia, northern PR China. Strain SJ-16T grew at pH 6.0–11.0 (optimum, pH 8.0–9.0), 4–40 °C (optimum, 30–35 °C) and in the presence of 0–8 % (w/v) NaCl (optimum, 0–2 %). The strain was negative for catalase and positive for oxidase. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain SJ-16T clustered with Luteimonas chenhongjianii 100111T and Luteimonas terrae THG-MD21T, and had 98.8, 98.6, 98.3 and <97.9 % of 16S rRNA gene sequence similarity to strains L. chenhongjianii 100111T, L. terrae THG-MD21T, L. aestuarii B9T and all other type strains of the genus Luteimonas , respectively. The major cellular fatty acids were iso-C15 : 0, iso-C16 : 0, summed feature 3 (C16 : 1  ω7c and/or C16 : 1  ω6c) and summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1  ω9c). Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids, and ubiquinone-8 was the only respiratory quinone. The genomic DNA G+C content was 69.3 mol%. The digital DNA–DNA hybridization and average nucleotide identity values of strain SJ-16T to L. chenhongjianii 100111T, L. terrae THG-MD21T, L. rhizosphaerae 4-12T and L. aestuarii B9T were 36.9, 37.5, 24.0 and 21.1 %, and 80.9, 80.6, 80.7 and 76.3 %, respectively. Based on phenotypic, physiological and phylogenetic results, strain SJ-16T represents a novel species of the genus Luteimonas , for which the name Luteimonas deserti is proposed. The type strain is SJ-16T (=CGMCC 1.17694T=KCTC 82207T).


Sign in / Sign up

Export Citation Format

Share Document