scholarly journals Rhizobium yantingense sp. nov., a mineral-weathering bacterium

2015 ◽  
Vol 65 (Pt_2) ◽  
pp. 412-417 ◽  
Author(s):  
Wei Chen ◽  
Xia-Fang Sheng ◽  
Lin-Yan He ◽  
Zhi Huang

A Gram-stain-negative, rod-shaped bacterial strain, H66T, was isolated from the surfaces of weathered rock (purple siltstone) found in Yanting, Sichuan Province, PR China. Cells of strain H66T were motile with peritrichous flagella. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain H66T belongs to the genus Rhizobium . It is closely related to Rhizobium huautlense SO2T (98.1 %), Rhizobium alkalisoli CCBAU 01393T (98.0 %) and Rhizobium cellulosilyticum ALA10B2T (98.0 %). Analysis of the housekeeping genes, recA, glnII and atpD, showed low levels of sequence similarity (<92.0 %) between strain H66T and other recognized species of the genus Rhizobium . The predominant components of the cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The G+C content of strain H66T was 60.3 mol%. Strain H66T is suggested to be a novel species of the genus Rhizobium based on the low levels of DNA–DNA relatedness (ranging from 14.3 % to 40.0 %) with type strains of species of the genus Rhizobium and on its unique phenotypic characteristics. The namehttp://dx.doi.org/10.1601/nm.1279 Rhizobium yantingense sp. nov. is proposed for this novel species. The type strain is H66T ( = CCTCC AB 2014007T = LMG 28229T).

2013 ◽  
Vol 63 (Pt_10) ◽  
pp. 3823-3828 ◽  
Author(s):  
Chokchai Kittiwongwattana ◽  
Chitti Thawai

A Gram-stain-negative, rod-shaped bacterium was isolated and designated strain L6-8T during a study of endophytic bacterial communities in lesser duckweed (Lemna aequinoctialis). Cells of strain L6-8T were motile with peritrichous flagella. The analysis of the nearly complete 16S rRNA gene sequence indicated that strain L6-8T was phylogenetically related to species of the genus Rhizobium . Its closest relatives were Rhizobium borbori DN316T (97.6 %), Rhizobium oryzae Alt 505T (97.3 %) and Rhizobium pseudoryzae J3-A127T (97.0 %). The sequence similarity analysis of housekeeping genes recA, glnII, atpD and gyrB showed low levels of sequence similarity (<91.5 %) between strain L6-8T and other species of the genus Rhizobium with validly published names. The pH range for growth was 4.0–9.0 (optimum 6.0–7.0), and the temperature range for growth was 20–45 °C (optimum 30 °C). Strain L6-8T tolerated NaCl up to 2 % (w/v) (optimum 1 % NaCl). The predominant components of cellular fatty acids were C19 : 0 cyclo ω8c (31.32 %), summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c; 25.39 %) and C16 : 0 (12.03 %). The DNA G+C content of strain L6-8T was 60.4 mol% (T m). nodC and nifH were not amplified in strain L6-8T. DNA–DNA relatedness between strain L6-8T and R. borbori DN316T, R. oryzae Alt505T and R. pseudoryzae J3-A127T was between 11.2 and 18.3 %. Based on the sequence similarity analyses, phenotypic, biochemical and physiological characteristics and DNA–DNA hybridization, strain L6-8T could be readily distinguished from its closest relatives and represents a novel species of the genus Rhizobium , for which the name Rhizobium paknamense sp. nov. is proposed. The type strain is L6-8T ( = NBRC 109338T = BCC 55142T).


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1373-1377 ◽  
Author(s):  
Xiao-Xia Zhang ◽  
Xue Tang ◽  
Rizwan Ali Sheirdil ◽  
Lei Sun ◽  
Xiao-Tong Ma

Two strains (J3-AN59T and J3-N84) of Gram-stain-negative, aerobic and rod-shaped bacteria were isolated from the roots of fresh rice plants. The 16S rRNA gene sequence similarity results showed that the similarity between strains J3-AN59T and J3-N84 was 100 %. Both strains were phylogenetically related to members of the genus Rhizobium , and they were most closely related to Rhizobium tarimense ACCC 06128T (97.43 %). Similarities in the sequences of housekeeping genes between strains J3-AN59T and J3-N84 and those of recognized species of the genus Rhizobium were less than 90 %. The polar lipid profiles of both strains were predominantly composed of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unknown aminophospholipid. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The DNA G+C contents of J3-AN59T and J3-N84 were 55.7 and 57.1 mol%, respectively. The DNA–DNA relatedness value between J3-AN59T and J3-N84 was 89 %, and strain J3-AN59T showed 9 % DNA–DNA relatedness to R. tarimense ACCC 06128T, the most closely related strain. Based on this evidence, we found that J3-AN59T and J3-N84 represent a novel species in the genus Rhizobium and we propose the name Rhizobium rhizoryzae sp. nov. The type strain is J3-AN59T ( = ACCC 05916T = KCTC 23652T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 621-624 ◽  
Author(s):  
Zhen-Dong Zhang ◽  
Lin-Yan He ◽  
Zhi Huang ◽  
Xia-Fang Sheng

A Gram-reaction-negative, aerobic, non-motile, yellow-pigmented, rod-shaped bacterium, designated strain TH-19T, was isolated from a forest soil sample in Jiangsu province, China. On the basis of 16S rRNA gene sequence similarity, strain TH-19T was shown to belong to the genus Myroides , a member of the phylum Bacteroidetes , and was related to Myroides odoratimimus LMG 4029T (98.7 % similarity), Myroides profundi D25T (98.2 %) and Myroides marinus JS-08T (97.5 %). Strain TH-19T contained menaquinone-6 (MK-6) as the predominant menaquinone, and the dominant fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. The DNA G+C content of strain TH-19T was 37.2 mol%. The DNA–DNA relatedness values of strain TH-19T with Myroides odoratimimus JCM 7460T, Myroides profundi D25T and Myroides marinus JS-08T were below 70 %. Based on phenotypic, genotypic and phylogenetic evidence, it is suggested that strain TH-19T represents a novel species of the genus Myroides , for which the name Myroides xuanwuensis sp. nov. is proposed. The type strain is TH-19T ( = CCTCC AB 2013145T = JCM 19200T).


Author(s):  
Lina Sun ◽  
Wei Chen ◽  
Kaihua Huang ◽  
Weiguang Lyu ◽  
Xinhua Gao

Strain SJQ9T, an aerobic bacterium isolated from a soil sample collected in Shanghai, PR China, was characterized using a polyphasic approach. It grew optimally at pH 7.0, 30–35 °C and in the presence of 1 % (w/v) NaCl. A comparative analysis of 16S rRNA gene sequences showed that strain SJQ9T fell within the genus Aquabacterium . The closest phylogenetic relatives of strain SJQ9T were Aquabacterium citratiphilum DSM 11900T (98.6 % sequence similarity) and Aquabacterium commune DSM 11901T (96.4 %). Cells of the strain were Gram-stain-negative, motile, non-spore-forming, rod-shaped and positive for oxidase activity and negative for catalase. The chemotaxonomic properties of strain SJQ9T were consistent with those of the genus Aquabacterium : the major fatty acid was summed feature 3 (C16 : 1  ω6c and/or C16 : 1  ω7c). The isoprenoid quinone was Q-8. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content was 65.7 mol%. Strain SH9T exhibited a DNA–DNA relatedness level of 34±2 % with A. citratiphilum DSM 11900T and 28±3 % with A. commune DSM 11901T. Based on the obtained data, strain SJQ9T represents a novel species of the genus Aquabacterium , for which the name Aquabacterium soli sp. nov. is proposed. The type strain is SJQ9T (=JCM 33106T=CCTCC AB 2018284T).


Author(s):  
Jingling Liang ◽  
Sai Wang ◽  
Ayizekeranmu Yiming ◽  
Luoyi Fu ◽  
Iftikhar Ahmad ◽  
...  

Strain L22-9T, a Gram-stain-negative and rod-shaped bacterium, motile by one polar flagellum, was isolated from cornfield soil in Bijie, Guizhou Province, PR China. Based on 16S rRNA gene sequences, it was identified as a Pseudomonas species. Multilocus sequence analysis of concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences showed that strain L22-9T formed a clearly separated branch, located in a cluster together with Pseudomonas brassicacearum LMG 21623T, Pseudomonas kilonensis DSM 13647T and Pseudomonas thivervalensis DSM 13194T. Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) confirmed that strain L22-9T should be classified as a novel species. It was most closely related to P. kilonensis DSM 13647T with ANI and dDDH values of 91.87 and 46.3 %, respectively. Phenotypic features that can distinguish strain L22-9T from P. kilonensis DSM 13647T are the assimilation ability of N-acetyl-d-glucosamine, poor activity of arginine dihydrolase and failure to ferment ribose and d-fucose. The predominant cellular fatty acids of strain L22-9T are C16 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The respiratory quinones consist of Q-9 and Q-8. The polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phosphoglycolipids, two unidentified aminophospholipids and an unidentified glycolipid. Based on the evidence, we conclude that strain L22-9T represents a novel species, for which the name Pseudomonas bijieensis sp. nov. is proposed. The type strain is L22-9T (=CGMCC 1.18528T=LMG 31948T), with a DNA G+C content of 60.85 mol%.


Author(s):  
Qin Ma ◽  
Rui-Feng Lei ◽  
Yu-Qian Li ◽  
Dilireba Abudourousuli ◽  
Zulihumaer Rouzi ◽  
...  

A bacterial strain, designated YZGR15T, was isolated from the root of an annual halophyte Suaeda aralocaspica, collected from the southern edge of the Gurbantunggut desert, north-west PR China. Cells of the isolate were Gram-stain-positive, facultatively anaerobic, irregular rods. Growth occurred at 4–42 °C (optimum, 30–37 °C), at pH 6.0–9.0 (optimum, pH 7.0–7.5) and in the presence of 0–9 % (w/v) NaCl (optimum, 2–5 %). Phylogenetic analysis using 16S rRNA gene sequences indicated that strain YZGR15T showed the highest sequence similarity to Sanguibacter keddieii (98.27 %), Sanguibacter antarcticus (98.20 %) and Sanguibacter inulinus (98.06 %). Results of genome analyses of strain YZGR15T indicated that the genome size was 3.16 Mb, with a genomic DNA G+C content of 71.9 mol%. Average nucleotide identity and digital DNA–DNA hybridization values between strain YZGR15Tand three type strains were in the range of 76.5–77.8 % and 20.0–22.2 %, respectively. Analysis of the cellular component of strain YZGR15T revealed that the primary fatty acids were anteiso-C15 : 0, C16 : 0, C14 : 0 and iso-C16 : 0 and the polar lipids included diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and two unidentified glycolipids. The cell-wall characteristic amino acids were glutamic acid, alanine and an unknown amino acid. The whole-cell sugars for the strain were mannose, ribose, rhamnose, glucose and an unidentified sugar. The predominant respiratory quinone was MK-9(H4). Based on the results of genomic, phylogenetic, phenotypic and chemotaxonomic analyses, strain YZGR15T represents a novel species of the genus Sanguibacter , for which the name Sanguibacter suaedae sp. nov. is proposed. The type strain is YZGR15T (=CGMCC 1.18691T=KCTC 49659T)


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1370-1375 ◽  
Author(s):  
Isabel Snauwaert ◽  
Bart Hoste ◽  
Katrien De Bruyne ◽  
Karolien Peeters ◽  
Luc De Vuyst ◽  
...  

Two lactic acid-producing, Gram-stain-positive rods were isolated from a microbial mat actively growing in the littoral zone of an Antarctic lake (Forlidas Pond) in the Pensacola mountains and studied using a polyphasic taxonomic approach. The isolates were examined by phylogenetic analysis of the 16S rRNA gene, multilocus sequence analysis of pheS, rpoA and atpA, and biochemical and genotypic characteristics. One strain, designated LMG 26641, belonged to Carnobacterium alterfunditum and the other strain, designated LMG 26642T, could be assigned to a novel species, with Carnobacterium funditum DSM 5970T as its closest phylogenetic neighbour (99.2 % 16S rRNA gene sequence similarity). Carnobacterium iners sp. nov. could be distinguished biochemically from other members of the genus Carnobacterium by the lack of acid production from carbohydrates. DNA–DNA relatedness confirmed that strain LMG 26642T represented a novel species, for which we propose the name Carnobacterium iners sp. nov. (type strain is LMG 26642T  = CCUG 62000T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5943-5949 ◽  
Author(s):  
Yun-zhen Yang ◽  
Ji-feng Chen ◽  
Wan-ru Huang ◽  
Ran-ran Zhang ◽  
Shuangjiang Liu ◽  
...  

A novel Gram-stain-negative, strictly aerobic, rod-shaped, brick red-pigmented bacterium, designated R-22-1 c-1T, was isolated from water from Baiyang Lake, Hebei Province, PR China. The strain was able to grow at 20–30 °C (optimum, 30 °C) and pH 6–7 (optimum, pH 6) in Reasoner’s 2A medium. 16S rRNA gene sequence and phylogenetic analyses of R-22-1 c-1T revealed closest relationships to Rufibacter immobilis MCC P1T (97.8 %), Rufibacter sediminis H-1T (97.9 %) and Rufibacter glacialis MDT1-10-3T (97.0 %), with other species of the genus Rufibacter showing less than 97.0 % sequence similarity. The predominant polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids and three unidentified lipids. The major cellular fatty acids were iso-C15 : 0, C15 : 1  ω6c, C17 : 1  ω6c, anteiso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1  ω7c and/or C16 : 1  ω6c) and summed feature 4 (iso-C17 : 1I and/or anteiso-C17 : 1B). The respiratory quinone was MK-7. The draft genome of R-22-1 c-1T was 5.6 Mbp in size, with a G+C content of 50.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization relatedness values between strain R-22-1 c-1T and related type strains were R. immobilis MCC P1T (77.2 and 21.8 %), R. sediminis H-1T (81.6 and 21.4 %) and R. tibetensis 1351T (78.5 and 22.9 %). Based on these phylogenetic, chemotaxonomic and genotypic results, strain R-22-1 c-1T represents a novel species in the genus Rufibacter , for which the name Rufibacter latericius sp. nov. is proposed. The type strain is R-22-1 c-1T (=CGMCC 1.13570T=KCTC 62781T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2879-2887 ◽  
Author(s):  
Dong Han ◽  
Heng-Lin Cui

A novel Gram-stain-negative, aerobic and rod-shaped halophilic archaeon, designated HD8-45T, was isolated from the red brine of salted brown alga Laminaria produced at Dalian, PR China. According to the results of 16S rRNA gene and rpoB′ gene sequence comparisons, strain HD8-45T showed the highest sequence similarity to the corresponding genes of Salinirussus salinus YGH44T (95.1 and 85.2 % similarities, respectively), Halovenus aranensis EB27T (91.2 and 86.0 % similarities, respectively). The low sequence similarity and the phylogeny implied the novel generic status of strain HD8-45T. Genomic relatedness analyses showed that strain HD8-45T were clearly distinguished from other species in the order Halobacteriales , with average nucleotide identity, amino acid identity and in silico DNA–DNA hybridization values not more than 75.1, 65.6 and 21.5 %. The polar lipid pattern contained phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, two major glycolipids and two minor glycolipids. The two major glycolipids and a minor glycolipid were chromatographically identical to disulfated mannosyl glucosyl diether, sulfated mannosyl glucosyl diether and mannosyl glucosyl diether, respectively. The major respiratory quinones were menaquinone MK-8 and MK-8(H2). The DNA G+C content was 62.0 mol% (Tm ) and 61.9 mol% (genome). All these results showed that strain HD8-45T represents a novel species of a new genus in the order Halobacteriales , for which the name Salinibaculum litoreum gen. nov., sp. nov. is proposed. The type strain of Salinibaculum litoreum is HD8-45T (=CGMCC 1.15328T=JCM 31107T).


2020 ◽  
Vol 70 (6) ◽  
pp. 3656-3664 ◽  
Author(s):  
Nao Ikeyama ◽  
Atsushi Toyoda ◽  
Sho Morohoshi ◽  
Tadao Kunihiro ◽  
Takumi Murakami ◽  
...  

Four strains (9CBEGH2T, 9BBH35, 6BBH38 and 6EGH11) of Gram-stain-positive, obligately anaerobic, rod-shaped bacteria were isolated from faecal samples from healthy Japanese humans. The results of 16S rRNA gene sequence analysis indicated that the four strains represented members of the family Erysipelotrichaceae and formed a monophyletic cluster with ‘ Absiella argi ’ strain N6H1-5 (99.4% sequence similarity) and Eubacterium sp. Marseille-P5640 (99.3 %). Eubacterium dolichum JCM 10413T (94.2 %) and Eubacterium tortuosum ATCC 25548T (93.7 %) were located near this monophyletic cluster. The isolates, 9CBEGH2T, ‘ A. argi ’ JCM 30884 and Eubacterium sp. Marseille-P5640 shared 98.7–99.1% average nucleotide identity (ANI) with each other. Moreover, the in silico DNA–DNA hybridization (DDH) values among three strains were 88.4–90.6%, indicating that these strains represent the same species. Strain 9CBEGH2T showed 21.5–24.1 % in silico DDH values with other related taxa. In addition, the ANI values between strain 9CBEGH2T and other related taxa ranged from 71.2 % to 73.5 %, indicating that this strain should be considered as representing a novel species on the basis of whole-genome relatedness. Therefore, we formally propose a novel name for ‘ A. argi ’ strains identified because the name ‘ A. argi ’ has been effectively, but not validly, published since 2017. On the basis of the collected data, strain 9CBEGH2T represents a novel species of a novel genus, for which the name Amedibacterium intestinale gen. nov., sp. nov. is proposed. The type strain of A. intestinale is 9CBEGH2T (=JCM 33778T=DSM 110575T).


Sign in / Sign up

Export Citation Format

Share Document