scholarly journals Nesterenkonia rhizosphaerae sp. nov., an alkaliphilic actinobacterium isolated from rhizosphere soil in a saline-alkaline desert

2014 ◽  
Vol 64 (Pt_12) ◽  
pp. 4021-4026 ◽  
Author(s):  
Hong-Fei Wang ◽  
Yong-Guang Zhang ◽  
Ji-Yue Chen ◽  
Wael N. Hozzein ◽  
Li Li ◽  
...  

An alkaliphilic actinobacterial strain, designated EGI 80099T, was isolated from a rhizosphere soil sample of Reaumuria soongorica found in the desert soils of Fukang, Xinjiang, north-west China. Cells of strain EGI 80099T were Gram-stain-positive, non-motile, non-endospore-forming cocci. The predominant menaquinones were MK-7, MK-8 and MK-9. The major cellular fatty acids (>10 %) were anteiso-C15 : 0 and anteiso-C17 : 0. Analysis of the cell wall showed the presence of peptidoglycan of the type l-Lys–Gly–l-Glu, variation A4α. Cells of the isolate contained phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unknown phospholipid and an unidentified glycolipid as polar lipids. The genomic DNA G+C content was 63.4 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80099T belongs to the genus Nesterenkonia , sharing 95.68–97.37 % sequence similarities with the type strains of recognized species within this genus. DNA–DNA hybridization of strain EGI 80099T with the type strains of species that showed the highest sequence similarities, Nesterenkonia aethiopica DSM 17733T (97.37 %), Nesterenkonia flava CAAS 251T (97.23 %) and Nesterenkonia xinjiangensis YIM 70097T (97.02 %), gave relatedness values of 8.7–62.2 %. Data from DNA–DNA hybridizations and physiological and biochemical tests indicated that strain EGI 80099T represents a novel species of the genus Nesterenkonia , for which the name Nesterenkonia rhizosphaerae sp. nov. is proposed. The type strain is EGI 80099T ( = BCRC 16947T = JCM 19129T).

2020 ◽  
Vol 70 (3) ◽  
pp. 1672-1677 ◽  
Author(s):  
Zhi-Man Song ◽  
Kai-Ling Wang ◽  
Qi Yin ◽  
Cheng-Chun Chen ◽  
Ying Xu

Strain XY-J91T, a Gram-stain-negative, reddish orange, non-spore-forming and short-rod-shaped marine bacterium, was isolated from rhizosphere soil of the mangrove plant Kandelia candel (L.) Druce in Mai Po Nature Reserve, Hong Kong. The strain showed growth at 15–50 °C (optimum 40 °C), at pH 5.5–9.5 (optimum 7.0–8.0) and with 0–8 % (w/v) NaCl (optimum 1–2 %). The only respiratory quinone was MK-7 and the major fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, an unidentified aminolipid and an unidentified phospholipid. The G+C content of strain XY-J91T was 40.4 mol%. Strain XY-J91T exhibited highest 16S rRNA gene sequence similarities to the type strains of Algoriphagus marincola SW-2T (96.66 %), Algoriphagus taiwanensis CC-PR-82T (96.21%), Algoriphagus ornithinivorans JC2052T (96.16%), Algoriphagus confluentis HJM-2T (95.73%) and Algoriphagus zhangzhouensis 12C11T (95.52 %). Based on the phylogenetic, phenotypic and chemotaxonomic evidence presented, strain XY-J91T represents a novel species of the genus Algoriphagus , for which the name Algoriphagus kandeliae sp. nov. is proposed. The type strain is XY-J91T (=MCCC 1K03612T=KCTC 72216T).


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2589-2592 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Song-Ih Han ◽  
Kyung-Sook Whang

A novel actinobacterium, designated strain BR-34T, was isolated from rhizosphere soil of bamboo (Phyllostachys nigro var. henonis) sampled in Damyang, Korea. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Catenulispora . The strain contained iso-C16 : 0 as the major fatty acid and MK-9(H4), MK-9(H6) and MK-9(H8) as major isoprenoid quinones. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BR-34T formed a cluster separate from members of the genus Catenulispora and was related most closely to Catenulispora acidiphila ID139908T (97.4 % similarity), Catenulispora rubra Aac-30T (97.3 %), Catenulispora yoronensis TT N02-20T (97.3 %) and Catenulispora subtropica TT 99-48T (97 %). However, the level of DNA–DNA relatedness between strain BR-34T and C. acidiphila ID139908T was only 45.32 %. Based on DNA–DNA relatedness, morphological and phenotypic data, strain BR-34T could be distinguished from the type strains of phylogenetically related species. It is therefore considered to represent a novel species of the genus Catenulispora , for which the name Catenulispora graminis sp. nov. is proposed. The type strain is BR-34T ( = KACC 15070T = NBRC 107755T).


2015 ◽  
Vol 65 (Pt_5) ◽  
pp. 1537-1541 ◽  
Author(s):  
De-Chao Zhang ◽  
Rosa Margesin

A Gram-stain-negative, Na+-requiring bacterial strain, designated B20-1T, was isolated from soil of the root system of mangrove forest. Cells were curved rods and motile by means of a polar flagellum. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain B20-1T belonged to the genus Marinomonas , sharing highest sequence similarities with Marinomonas rhizomae IVIA-Po-145T (97.6 %), Marinomonas dokdonensis DSW10-10T (97.0 %) and Marinomonas foliarum IVIA-Po-155T (96.9 %). The predominant cellular fatty acids of strain B20-1T were C10 : 0 3-OH, C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C16 : 0. Phosphatidylethanolamine and phosphatidylglycerol were identified as the predominant phospholipids. The predominant ubiquinone was Q-8. The genomic DNA G+C content of strain B20-1T was 46.6 mol%. On the basis of phenotypic characteristics, phylogenetic analysis and DNA–DNA relatedness, a novel species, Marinomonas mangrovi sp. nov., is proposed with B20-1T ( = DSM 28136T = LMG 28077T) as the type strain.


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1419-1427 ◽  
Author(s):  
Peter Kämpfer ◽  
Marie T. Poppel ◽  
Gottfried Wilharm ◽  
Hans-Jürgen Busse ◽  
John A. McInroy ◽  
...  

Two yellow-pigmented bacterial strains (100T and C26T), showing 98.4 % 16S rRNA gene sequence similarity to each other and isolated from a chicken in Germany and as a contaminant from an agar plate of a rhizosphere sample in Alabama, were studied by using a polyphasic taxonomic approach. Cells of both isolates were rod-shaped and stained Gram-negative. A comparison of the 16S rRNA gene sequences of the two organisms with the sequences of the type strains of the most closely related species of the genus Chryseobacterium showed the highest sequence similarities of strains 100T and C26T to the type strains of Chryseobacterium joostei (respectively 97.5 and 98.2 %), C. viscerum (96.6, 97.8 %), C. gleum (97.1, 97.7 %), C. arthrosphaerae (97.3%, 97.7 %), C. indologenes (97.2, 97.7 %), C. tructae (96.6, 97.6 %), C. jejuense (97.0, 97.6 %) and C. oncorhynchi (96.3, 97.5 %); 16S rRNA gene sequence similarities to members of all other species of the genus Chryseobacterium were below 97.5 %. The fatty acid profiles of both strains consisted of the major fatty acids iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c), iso-C17 : 1ω9c and iso-C17 : 0 3-OH, but also showed slight differences (absence or presence of C16 : 0 3-OH and iso-C15 : 1 F). DNA–DNA hybridizations between the two strains and between the novel strains and the type strains of C. joostei , C. indologenes , C. jejuense , C. tructae and C. viscerum resulted in relatedness values clearly below 70 %. These DNA–DNA hybridization results and the differentiating biochemical and chemotaxonomic properties showed that both strains 100T and C26T represent novel species, for which the names Chryseobacterium gallinarum sp. nov. (type strain 100T = LMG 27808T = CCM 8493T) and Chryseobacterium contaminans sp. nov. (type strain C26T = LMG 27810T = CCM 8492T) are proposed.


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1491-1498 ◽  
Author(s):  
Ammara Nariman Addou ◽  
Peter Schumann ◽  
Cathrin Spröer ◽  
Hocine Hacene ◽  
Jean-Luc Cayol ◽  
...  

A novel filamentous bacterium, designated NariEXT, was isolated from soil collected from Chott Melghir salt lake, which is located in the south-east of Algeria. The strain was an aerobic, halotolerant, thermotolerant, Gram-positive bacterium that was able to grow in NaCl concentrations up to 21 % (w/v), at 37–60 °C and at pH 5.0–9.5. The major fatty acids were iso- and anteiso-C15 : 0. The DNA G+C content was 47.3 mol%. The major menaquinone was MK-7, but MK-6 and MK-8 were also present. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine (methyl-PE). Results of molecular and phenotypic analysis led to the description of the strain as a new member of the family Thermoactinomycetaceae . The isolate was distinct from members of recognized genera of this family by morphological, biochemical and chemotaxonomic characteristics. Strain NariEXT showed 16S rRNA gene sequence similarities of 95.38 and 94.28 % with the type strains of Desmospora activa and Kroppenstedtia eburnea , respectively, but differed from both type strains in its sugars, polar lipids and in the presence of methyl-PE. On the basis of physiological and phylogenetic data, strain NariEXT represents a novel species of a new genus of the family Thermoactinomycetaceae for which the name Melghirimyces algeriensis gen. nov., sp. nov. is proposed. The type strain of Melghirimyces algeriensis, the type species of the genus, is NariEXT ( = DSM 45474T = CCUG 59620T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1647-1652 ◽  
Author(s):  
Akio Tani ◽  
Nurettin Sahin ◽  
Kazuhide Kimbara

A pink-pigmented, facultatively methylotrophic bacterium, strain 35aT, was isolated from the leaves of Oxalis corniculata. Cells of strain 35aT were Gram-reaction-negative, motile, non-spore-forming rods. The highest 16S rRNA gene pairwise sequence similarities for strain 35aT were found with the strains of Methylobacterium iners 5317S-33T (96.7 %), ‘Methylobacterium soli’ YIM 48816 (96.6 %) and Methylobacterium jeotgali S2R03-9T (96.3 %). 16S rRNA gene sequence similarities with the type strains of all other recognized species of the genus Methylobacterium were below 96 %. Major cellular fatty acids were C18 : 1ω7c, C18 : 0 and C16 : 0. The results of DNA–DNA hybridization experiments, analysis of cpn60 gene sequences, fatty acid profiles, whole-cell MALDI-TOF/MS spectral pattern analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain 35aT from its nearest phylogenetic neighbours. Strain 35aT is therefore considered to represent a novel species within the genus Methylobacterium , for which the name Methylobacterium oxalidis sp. nov. is proposed. The type strain is 35aT ( = DSM 24028T = NBRC 107715T).


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1799-1804 ◽  
Author(s):  
He Xing ◽  
Chongxi Liu ◽  
Yuejing Zhang ◽  
Junwei Zhao ◽  
Chuang Li ◽  
...  

A novel actinomycete, designated strain NEAU-FHS4T, was isolated from the root of black false hellebore (Veratrum nigrum L.). Strain NEAU-FHS4T formed single spores with smooth surfaces on substrate mycelium. The novel strain contained meso-diaminopimelic as amino acid of the peptidoglycan and xylose and glucose as whole-cell sugars. The predominant menaquinones were MK-10(H6) and MK-10(H8). Mycolic acids were not detected. The diagnostic phospholipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylinositol. The predominant cellular fatty acids were iso-C16 : 0, C16 : 0, C18 : 0 and anteiso-C17 : 0. Phenotypic and chemotaxonomic analysis showed that the novel isolate had characteristics typical of members of the genus Plantactinospora . 16S rRNA gene sequence analysis also indicated that strain NEAU-FHS4T belonged to the genus Plantactinospora , with highest sequence similarities to Plantactinospora mayteni YIM 61359T (98.88 %) and Plantactinospora endophytica YIM 68255T (98.85 %). The results of DNA–DNA hybridization and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the novel strain from the most closely related strains. Based on morphological, chemotaxonomic and phylogenetic data, strain NEAU-FHS4T is considered to represent a novel species of the genus Plantactinospora , for which the name Plantactinospora veratri sp. nov. is proposed. The type strain is NEAU-FHS4T ( = CGMCC 4.7143T = DSM 46718T).


2014 ◽  
Vol 64 (Pt_2) ◽  
pp. 431-437 ◽  
Author(s):  
Kyung-Sook Whang ◽  
Jae-Chan Lee ◽  
Hae-Ran Lee ◽  
Song-Ih Han ◽  
Sang-Ho Chung

An exopolysaccharide-producing bacterium, designated strain DRP 35T, was isolated from the rhizosphere soil of a medicinal herb, Angelica sinensis, at Geumsan in Korea. Cells were Gram-staining-negative, non-motile, catalase-positive and oxidase-negative short rods. The isolate grew aerobically from 15 to 45 °C (optimum 30 °C), pH 3.5–7.0 (optimum pH 5.0) and in the presence of 0–1.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain DRP 35T belongs to the genus Terriglobus in the phylum Acidobacteria with a sequence similarity of 97.2 % and 97.0 % to Terriglobus saanensis SP1PR4T and Terriglobus roseus KBS63T, respectively. The genomic DNA G+C content was 62.1 mol%. DNA–DNA relatedness between strain DRP 35T and the type strains of the other species of the genus Terriglobus , T. saanensis SP1PR4T and T. roseus KBS63T, were 24.6 and 17.2 %, respectively. The predominant menaquinone was MK-8. Major fatty acids were iso-C15 : 0, C16 : 1ω7c and C16 : 0. The polar lipids were phosphatidylethanolamine, unidentified aminophospholipid and unknown phospholipids. On the basis of polyphasic analysis from this study, strain DRP 35T represents a novel species of the genus Terriglobus for which the name Terriglobus tenax sp. nov. is proposed. The type strain is DRP 35T ( = KACC 16474T = NBRC 109677T).


2020 ◽  
Vol 70 (12) ◽  
pp. 6147-6154
Author(s):  
Peter Kämpfer ◽  
Rute Irgang ◽  
Stefanie P. Glaeser ◽  
Hans-Jürgen Busse ◽  
Alexis Criscuolo ◽  
...  

A Gram-staining-negative non endospore-forming strain, T13(2019)T was isolated from water samples from Atlantic salmon (Salmo salar) fry culture in Chile and studied in detail for its taxonomic position. The isolate shared highest 16S rRNA gene sequence similarities with the type strains of Flavobacterium chungangense (98.44 %) followed by Flavobacterium tructae and Flavobacterium spartansii (both 98.22 %). Menaquinone MK-6 was the predominant respiratory quinone in T13(2019)T. Major polar lipids were phosphatidylethanolamine, an ornithine lipid and the unidentified polar lipids L1, L3 and L4 lacking a functional group. The major polyamine was sym-homospermidine. The fatty acid profile contained major amounts of iso-C15 : 0, iso-C15 : 0 3-OH, iso-C17 : 0 3-OH, C15 : 0, summed feature 3 (C16 : 1  ω7c and/or iso-C15 : 0 2-OH) and various hydroxylated fatty acids in smaller amounts, among them iso-C16 : 0 3-OH, and C15 : 0 3-OH, which supported the grouping of the isolate into the genus Flavobacterium . Physiological/biochemical characterisation and ANI calculations with the type strains of the most closely related species allowed a clear phenotypic and genotypic differentiation. In addition it became obvious, that the type strains of F. tructae and F. spartansii showed 100 % 16S rRNA gene sequence similarities and ANI values of 97.21%/ 97.59 % and DDH values of 80.40 % [77.5 and 83%]. These data indicate that F. tructae and F. spartansii belong to the same species and it is proposed that F. spartansii is a later heterotypic synonym of F. tructae . For strain T13(2019)T (=CIP 111411T=LMG 30298T=CCM 8798T) a new species with the name Flavobacterium salmonis sp. nov. is proposed.


Author(s):  
Dan-Feng Liu ◽  
Shao-Qi Chen ◽  
Hong-Fei Wang ◽  
Yuan-Guo Xie ◽  
Rui Gao ◽  
...  

A Gram-stain-positive, non-motile and coccus-shaped bacterium, designated strain LNNU 331112T, was isolated from the composite rhizosphere soil of the halophyte Suaeda aralocaspica (Bunge) Freitag and Schütze, which was collected in Xinjiang, north-west China. Growth occurred at 10–45 °C, pH 6.0–11.0 and in the presence of 0–10 % NaCl (w/v). Phylogenetic analysis based on the 16S rRNA gene sequence suggested that strain LNNU 331112T belonged to the genus Hoyosella and showed 95.6, 95.5 and 95.4 % sequence similarities to Hoyosella altamirensis DSM 45258T, Hoyosella subflava CGMCC 4.3532T and Hoyosella rhizosphaerae CGMCC 1.15478T, respectively. The estimated digital DNA–DNA hybridization relatedness values between strain LNNU 331112T and the type strains of H. altamirensis DSM 45258T, H. subflava CGMCC 4.3532T and H. rhizosphaerae CGMCC 1.15478T were 18.9, 19.3 and 18.3 %, respectively. The average nucleotide identity values between strain LNNU 331112T and H. altamirensis DSM 45258T, H. subflava CGMCC 4.3532T and H. rhizosphaerae CGMCC 1.15478T were 72.6, 72.7 and 72.3 %, respectively. The genome sequence of strain LNNU 331112T showed 69.0–72.3 % average amino acid identity values in comparison with the related genome sequences of three validly published Hoyosella species. The genome of strain LNNU 331112T was 3.47 Mb, with a DNA G+C content of 68.4 mol%. A total of 3182 genes were identified as protein-coding in strain LNNU 331112T. Genomic analysis revealed that a number of genes involved in osmotic pressure regulation, intracellular pH homeostasis and potassium (K+) uptake protein were found in strain LNNU 331112T. The predominant menaquinones were MK-8 (44.6 %) and MK-7 (55.4 %), which differentiated strain LNNU 331112T from other three recognized Hoyosella species. Major fatty acids (>10 %) were C17 : 1 ω8c (33.8 %), C16 : 0 (23.3 %), C17 : 0 (12.8 %) and summed feature 3 (12.9 %), which also clearly separated strain LNNU 331112T from three recognized Hoyosella species. The polar lipid profile of strain LNNU 331112T included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, one unidentified glycolipid, one unidentified phospholipid and two unidentified lipids. According to the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain LNNU 331112T is considered to represent a novel species of the genus Hoyosella , for which the name Hoyosella suaedae sp. nov. is proposed. The type strain is LNNU 331112T (=KCTC 39808T=CGMCC 1.17107T=DSM 103463T).


Sign in / Sign up

Export Citation Format

Share Document