scholarly journals Kordiimonas gwangyangensis gen. nov., sp. nov., a marine bacterium isolated from marine sediments that forms a distinct phyletic lineage (Kordiimonadales ord. nov.) in the ‘Alphaproteobacteria’

2005 ◽  
Vol 55 (5) ◽  
pp. 2033-2037 ◽  
Author(s):  
Kae Kyoung Kwon ◽  
Hee-Soon Lee ◽  
Sung Hyun Yang ◽  
Sang-Jin Kim

A marine bacterium, designated strain GW14-5T, capable of degrading high-molecular-mass polycyclic aromatic hydrocarbons was isolated from the sediments of Gwangyang Bay, Republic of Korea, after enrichment culture for 2 years with a mixture of benzo[a]pyrene and pyrene. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate forms a phyletic lineage that is distinct from the seven known orders within the ‘Alphaproteobacteria’. 16S rRNA gene sequence similarity of strain GW14-5T to all recognized bacterial species was not greater than 92 %. The dominant fatty acids of the isolate were i-17 : 1 (46·2 %), i-15 : 0 (15·1 %) and i-17 : 0 (12·6 %). The major respiratory quinone was MK-5, and the DNA G+C content was 39·3 mol%. Cells of strain GW14-5T were Gram-negative, motile, catalase-positive, oxidase-positive and weakly halophilic. Glucose, N-acetylglucosamine and maltose were utilized as sole carbon sources. The strain was positive for β-glucosidase activity. Optimal growth of strain GW14-5T was at pH 7·0 and 37–40 °C and required the presence of 2 % (w/v) NaCl. On the basis of this evidence, strain GW14-5T represents a novel genus and species in the ‘Alphaproteobacteria’ for which the name Kordiimonas gwangyangensis gen. nov., sp. nov. is proposed. The novel order Kordiimonadales is proposed for the distinct phyletic line represented by the genus Kordiimonas. The type strain is GW14-5T (=KCCM 42021T=JCM 12864T).

2021 ◽  
Author(s):  
Soohyun Maeng ◽  
Yuna Park ◽  
Tuvshinzaya Damdintogtokh ◽  
Hyejin Oh ◽  
Minji Bang ◽  
...  

Abstract Gram-stain-negative, aerobic, non-flagellated strains 172403-2T and BT310T were isolated from the soil collected in Pyeongchang city and Uijeongbu city, Korea. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains 172403-2T and BT310T formed a distinct lineage within the family Hymenobacteraceae (order Chitinophagales, class Chitinophagia) and were most closely related to members of the genus Pontibacter, Pontibacter chitinilyticus 17gy-14T (95.7%), and Pontibacter populi HLY7-15T (97.1% 16S rRNA gene sequence similarity) respectively. The optimal growth of strains 172403-2T and BT310T occurred at pH 7.0, in the absence of NaCl, and 25°C and 30°C, respectively. The predominant cellular fatty acids were iso-C15:0 and summed feature 4 (iso-C17:1 I / anteiso-C17:1 B). The major respiratory quinone of the two strains was MK-7. The major polar lipid of the two strains was phosphatidylethanolamine. Biochemical, chemotaxonomic and phylogenetic analyses indicated that strains 172403-2T and BT310T represent novel bacterial species within the genus Pontibacter, for which the names Pontibacter rubellus and Pontibacter situs are proposed. The type strains of Pontibacter rubellus and Pontibacter situs are 172403-2T and BT310T, respectively.


2007 ◽  
Vol 57 (5) ◽  
pp. 1050-1054 ◽  
Author(s):  
Seung Seob Bae ◽  
Kae Kyoung Kwon ◽  
Sung Hyun Yang ◽  
Hee-Soon Lee ◽  
Sang-Jin Kim ◽  
...  

A marine bacterium, DOKDO 007T, was isolated from the rhizosphere of the marine alga Ecklonia kurome collected from Dokdo Island, Korea, in October 2004. The strain produced orange-coloured colonies on marine agar 2216. 16S rRNA gene sequence analysis indicated that the novel isolate belonged to the family Flavobacteriaceae and showed relatively high sequence similarities with members of the genus Muricauda (92.0–94.0 %). Phylogenetic analysis based on nearly complete 16S rRNA gene sequences revealed that the novel isolate shared a lineage with members of the genera Muricauda and Costertonia. Cells were aerobic, Gram-negative rods producing non-diffusible carotenoid pigments. In contrast to all other members of the family Flavobacteriaceae, cells of DOKDO 007T were motile by means of a polar flagellum. Optimal growth occurred in the presence of 3.5–4 % (w/v) sea salts (corresponding to 2.7–3.1 % NaCl), at pH 8 and at temperatures of 26–29 °C. The novel strain required Ca2+ ions in addition to NaCl for growth. The dominant fatty acids were iso-15 : 0, iso-15 : 1ω10c and 10-methyl-16 : 0. The major respiratory quinone was MK-6. The DNA G+C content was 56.3 mol%, an unusually high value for members of the family Flavobacteriaceae. On the basis of these polyphasic taxonomic data, strain DOKDO 007T should be classified as representing a new genus and novel species in the family Flavobacteriaceae, for which the name Flagellimonas eckloniae gen. nov., sp. nov. is proposed. The type strain is DOKDO 007T (=KCCM 42307T=JCM 13831T).


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2397-2402 ◽  
Author(s):  
Zenghu Zhang ◽  
Xin Gao ◽  
Long Wang ◽  
Xiao-Hua Zhang

A Gram-stain-negative, strictly aerobic, non-flagellated, non-gliding, oxidase- and catalase-positive, white-pigmented and rod-shaped bacterium, designated strain XH122T, was isolated from a surface seawater sample collected from the South Pacific Gyre (45° 58′ E 163° 11′ S) during Integrated Ocean Drilling Program Expedition 329.Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain XH122T belonged to the genus Leucothrix and showed highest 16S rRNA gene sequence similarity to Leucothrix mucor DSM 2157T (94.3 %). It showed lower sequence similarities ( < 90.7 %) with all other representatives of the class Gammaproteobacteria. Optimal growth occurred in the presence of 2 % (w/v) NaCl, at pH 8.0 and at 28 °C. The DNA G+C content of strain XH122T was 46.2 mol%. The major fatty acids were C16 : 0, C16 : 1ω9c and C18 : 1ω9c. The major respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. On the basis of data from this polyphasic study, strain XH122T is considered to represent a novel species of the genus Leucothrix, for which the name Leucothrix pacifica sp. nov. is proposed. The type strain is XH122T ( = DSM 25984T = JCM 18388T).


2006 ◽  
Vol 56 (8) ◽  
pp. 1841-1845 ◽  
Author(s):  
Inês Nunes ◽  
Igor Tiago ◽  
Ana Luísa Pires ◽  
Milton S. da Costa ◽  
António Veríssimo

A Gram-positive bacterium, designated B22T, was isolated from potting soil produced in Portugal. This organism is a catalase-positive, oxidase-negative, motile, spore-forming, aerobic rod that grows optimally at 37 °C and pH 8.0–8.5. Optimal growth occurs in media containing 1 % (w/v) NaCl, although the organism can grow in 0–8 % NaCl. The cell wall peptidoglycan is of the A4α type with a cross-linkage containing d-Asp. The major respiratory quinone is menaquinone 7 and the major fatty acids are anteiso-15 : 0, anteiso-17 : 0 and iso-15 : 0. The DNA G+C content is 37.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain B22T formed a new branch within the family Bacillaceae. The novel isolate is phylogenetically closely related to members of genera of moderately halophilic bacilli and formed a coherent cluster with species of the genera Salinibacillus, Virgibacillus, Oceanobacillus and Lentibacillus, supported by bootstrap analysis at a confidence level of 71 %. Strain B22T exhibited 16S rRNA gene pairwise sequence similarity values of 94.7–94.3 % with members of the genus Salinibacillus, 95.1–92.8 % with members of the genus Virgibacillus, 94.7–93.2 % with members of the genus Oceanobacillus and 93.1–92.3 % with members of the genus Lentibacillus. On the basis of phylogenetic analysis and physiological and biochemical characteristics, it is proposed that strain B22T represents a novel species in a new genus, Paucisalibacillus globulus gen. nov., sp. nov. Strain B22T (=LMG 23148T=CIP 108857T) is the type strain of Paucisalibacillus globulus.


2012 ◽  
Vol 62 (2) ◽  
pp. 370-375 ◽  
Author(s):  
Yan-Jiao Zhang ◽  
Xi-Ying Zhang ◽  
Hui-Lin Zhao ◽  
Ming-Yang Zhou ◽  
Hui-Juan Li ◽  
...  

A protease-producing marine bacterium, designated CF12-14T, was isolated from sediment of the South China Sea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain CF12-14T formed a separate lineage within the genus Idiomarina (Gammaproteobacteria). The isolate showed the highest 16S rRNA gene sequence similarity with Idiomarina salinarum ISL-52T (94.7 %), Idiomarina seosinensis CL-SP19T (94.6 %) and other members of the genus Idiomarina (91.9–94.6 %). Cells were Gram-negative, aerobic, flagellated, straight or slightly curved, and often formed buds and prosthecae. Strain CF12-14T grew at 4–42 °C (optimum 30–35 °C) and with 0.1–15 % (w/v) NaCl (optimum 2–3 %). The isolate reduced nitrate to nitrite and hydrolysed DNA, but did not produce acids from sugars. The predominant cellular fatty acids were iso-C15 : 0 (27.4 %), iso-C17 : 0 (16.0 %) and iso-C17 : 1ω9c (15.8 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The major respiratory quinone was ubiquinone 8. The DNA G+C content was 50.4 mol%. The phylogenetic, phenotypic and chemotaxonomic data supported the conclusion that CF12-14T represents a novel species of the genus Idiomarina, for which the name Idiomarina maris sp. nov. is proposed. The type strain is CF12-14T ( = CCTCC AB 208166T = KACC 13974T).


2012 ◽  
Vol 62 (Pt_7) ◽  
pp. 1552-1557 ◽  
Author(s):  
Na-Ri Shin ◽  
Tae Woong Whon ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
Young-Ok Kim ◽  
...  

Two strains, designated TW92T and TW93, were isolated from marine sediment collected from the south coast of Korea. Cells of both strains were Gram-staining-negative, coccus-shaped, aerobic, motile and catalase- and oxidase-positive. Strain TW92T grew optimally in the presence of 2 % (w/v) NaCl (range 1–5 %) while strain TW93 grew optimally in the presence of 1 % (w/v) NaCl (range 0–12 %), and both strains had an optimal growth temperature of 30 °C (range 4–37 °C). Strains TW92T and TW93 had the same optimum pH (pH 7), but differed in their ability to grow at pH 10. Phylogenetic analysis based on 16S rRNA gene sequence similarity showed that strains TW92T and TW93 were most closely related to Oceanisphaera donghaensis BL1T, with 98.8 % and 98.7 % similarity, respectively. Pairwise similarity between the 16S rRNA gene sequences of strains TW92T and TW93 was 99.9 %. The major fatty acids of both strains were summed features 3 (comprising C16 : 1ω7c/iso-C15 2-OH), C16 : 0 and C18 : 1ω7c. Both strains possessed the ubiquinone Q-8 as the predominant respiratory quinone and phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol as the polar lipids. The genomic DNA G+C contents of strains TW92T and TW93 were 58.5 and 59.6 mol%, respectively. Genomic relatedness values based on DNA–DNA hybridization of strains TW92T and TW93 with related species were below 47 % and 31 %, respectively. DNA–DNA hybridization values between strains TW92T and TW93 were above 85 %. On the basis of a taxonomic study using polyphasic analysis, it is proposed that the two isolates represent a novel species, Oceanisphaera sediminis sp. nov., with strain TW92T ( = KACC 15117T = JCM 17329T) as the type strain and strain TW93 ( = KACC 15118 = JCM 17330) as an additional strain.


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3812-3817 ◽  
Author(s):  
Luís França ◽  
Luciana Albuquerque ◽  
Milton S. da Costa

One strain designated W2.09-231T was isolated from an aquifer through a 150-metre-deep borehole feeding a mineral-water bottling plant in Central Portugal. Based on 16S rRNA gene sequence analysis, the novel organism is most closely related to the species of the genera Perlucidibaca and Paraperlucidibaca, belonging to the family Moraxellaceae, with 16S rRNA gene pairwise sequence similarity of 94.5 and 93.1 %, respectively. The strain was not pigmented and formed Gram-stain-negative, non-motile, short rod-shaped cells. The organism was strictly aerobic, and oxidase- and catalase-positive. Strain W2.09-231T was organotrophic, but grew only on a very limited number of single carbon sources. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and one major unknown phospholipid. Ubiquinone 12 (U-12) was the major respiratory quinone. The DNA G+C content of strain W2.09-231T was 62.0 mol%. Based on phylogenetic, physiological and biochemical characteristics, we describe a novel species of a novel genus represented by strain W2.09-231T ( = CECT 8582T = LMG 28332T) for which we propose the name Cavicella subterranea gen. nov., sp. nov. We also propose to emend the description of the species Perlucidibaca piscinae to reflect new results obtained in this study.


2021 ◽  
Author(s):  
Hyejin Oh ◽  
Myungkyum Kim ◽  
Sathiyaraj Sriniva

Abstract Two novel Gram-stain-negative, aerobic, rod-shaped, circular, convex, light-pink and white-coloured bacterial strains BT291T and BT350T were isolated from soil collected in Uijeongbu city (37° 44′ 55″ N, 127° 2′ 20″ E) and Jeju island (33° 22′ 48″ N, 126° 31′ 48″ E), respectively, South Korea. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strains BT291T and BT350T belong to a distinct lineage within the genus Microvirga (family Methylobacteriaceae, order Rhizobiales, class Alpha Proteobacteria, phylum Proteobacteria, kingdom Bacteria). The 16S rRNA gene sequence similarity between the two strains BT291T and BT350T was 97.4 %. The two strains were found to have the same quinone system, with Q-10 as the major respiratory quinone. The major polar lipids of strains BT291T and BT350T were phosphatidylethanolamine (PE), diphosphatydilglycerol (DPG), phosphatidylcholine (PC) and phosphatidylglycerol (PG). The major cellular fatty acids of strain BT291T were C18:1 ω7c (58.2 %) and cyclo-C19:0 ω8c (25.7 %). The major cellular fatty acids of strain BT350T were C18:1 ω7c (38.5 %) and cyclo-C19:0 ω8c (27.7 %). Based on the polyphasic analysis (phylogenetic, chemotaxonomic and biochemical), strains BT291T and BT350T can be suggested as two novel bacterial species within the genus Microvirga and the proposed names are Microvirga amygdalina and Microvirga alba, respectively. The type strain of Microvirga amygdalina is BT291T (= KCTC 72368T = NBRC 114845T) and the type strain of Microvirga alba is BT350T (= KCTC 72385T = NBRC 114848T).


2021 ◽  
Author(s):  
Tuvshinzaya Damdintogtokh ◽  
Yuna Park ◽  
Soohyun Maeng ◽  
Hye Jin Oh ◽  
Minji Bang ◽  
...  

Abstract Two novel Gram-stain-negative, aerobic, rod shaped bacterial strains BT290T and BT689T were isolated from soil collected in South Korea. Colony morphologies of both strains were circular and convex while the colors of BT290T and BT689T were light-pink and white, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that BT290T and BT689T belong to a distinct lineage within the genus Microvirga (family Methylobacteriaceae, order Rhizobiales, class Alphaproteobacteria, phylum Proteobacteria, kingdom Bacteria). The 16S rRNA gene sequence similarity between two strains was 97.9 %. Both strains had the similar quinone system, with ubiquinone 10 (Q-10) as the major respiratory quinone. The major polar lipids of strains BT290T and BT689T were phosphatidylethanolamine (PE), diphosphatydilglycerol (DPG), phosphatidylcholine (PC) and phosphatydilglycerol (PG). The major cellular fatty acids of strain BT290T were C18:1 ω7c (58.2 %) and C16:0 (17.7 %), while those of strain BT689T were C18:1 ω7c (61.8 %) and C16:0 (10.8 %).On the bases of polyphasic analysis (phylogenetic, chemotaxonomic and biochemical), strains BT290T and BT689T can be suggested as novel bacterial species within the genus Microvirga and the proposed names are Microvirga terrestris and Microvirga arvi, respectively. The type strain of Microvirga terrestris is BT290T (= KCTC 72367T=NBRC 114844T) and the type strain of Microvirga arvi is BT689T (= KACC 22016T = NBRC 114858T), respectively.


2021 ◽  
Author(s):  
Soohyun Maeng ◽  
Yuna Park ◽  
Hyejin Oh ◽  
Minji Bang ◽  
Jigden Baigalmaa ◽  
...  

Abstract A novel Gram-stain-negative, aerobic, rod-shaped, convex, and light pink-colored strain BT688T was isolated from a soil sample collected in Jeongseon city, South Korea. Phylogenetic analysis based on 16S rRNA gene sequence revealed that strain BT688T belongs to a distinct lineage within the genus Microvirga (family Methylobacteriaceae, order Rhizobiales, class Alpha Proteobacteria, phylum Proteobacteria). The 16S rRNA gene sequence similarity between strain BT688T and Microvirga aerilata 5420S-16T was 98.5%. Strain BT688T had Q-10 as a major respiratory quinone and the major polar lipids of strain BT688T was diphosphatidilglycerol (DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidylcholine (PC). The major cellular fatty acids of strain BT688T were C18:1 ω7c (76.0%) and summed feature 3 (9.6%).Based on the polyphasic characteristics, strain BT688T can be suggested as a novel bacterial species within the genus Microvirga and the proposed name is Microvirga jeongseonensis. The type strain of Microvirga jeongseonensis is BT688T (= KCTC XXXXT=NBRC 114857 T).


Sign in / Sign up

Export Citation Format

Share Document