scholarly journals Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine-barrel-decalcification wastewater

2006 ◽  
Vol 56 (11) ◽  
pp. 2511-2516 ◽  
Author(s):  
Pierre-Pol Liebgott ◽  
Laurence Casalot ◽  
Sebastien Paillard ◽  
Jean Lorquin ◽  
Marc Labat

A halophilic, Gram-negative, motile, non-sporulating bacterium designated strain FB1T was isolated from a wine-barrel-decalcification wastewater. The organism comprises straight rods and has a strictly respiratory metabolism with O2. Strain FB1T grows optimally at 20–30 °C and 5–6 % NaCl. The predominant fatty acids were found to be C18 : 1 ω9c (30.4 %), C16 : 0 (25.7 %), C12 : 0 3-OH (10.3 %), C16 : 1 ω9c (9.7 %) and C16 : 1 ω7c (8.4 %). A phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain forms a coherent cluster within the genus Marinobacter. The highest level of 16S rRNA gene sequence similarity (97.9 %) exhibited by strain FB1T was with the type strain of Marinobacter excellens. However, the level of DNA–DNA relatedness between the novel strain and M. excellens CIP 107686T was only 31.2 %. The DNA G+C content of strain FB1T was 58.7 mol%. On the basis of phenotypic and genotypic characteristics, and also phylogenetic evidence, strain FB1T is considered to represent a novel species of the genus Marinobacter, for which the name Marinobacter vinifirmus sp. nov. is proposed. The type strain is FB1T (=DSM 17747T=CCUG 52119T).

2005 ◽  
Vol 55 (3) ◽  
pp. 1027-1031 ◽  
Author(s):  
Jee-Min Lim ◽  
Che Ok Jeon ◽  
Dong-Jin Park ◽  
Hye-Ryoung Kim ◽  
Byoung-Jun Yoon ◽  
...  

A moderately halophilic, Gram-positive, rod-shaped bacterium (BH030004T) was isolated from a solar saltern in Korea. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BH030004T belonged to the genus Pontibacillus. Chemotaxonomic data (DNA G+C content, 42 mol%; major isoprenoid quinone, MK-7; cell-wall type, A1γ-type meso-diaminopimelic acid; major fatty acids, iso-C15 : 0 and anteiso-C15 : 0) also supported the affiliation of the isolate to the genus Pontibacillus. Although the 16S rRNA gene sequence similarity between strain BH030004T and Pontibacillus chungwhensis DSM 16287T was relatively high (99·1 %), physiological properties and DNA–DNA hybridization (about 7 % DNA–DNA relatedness) allowed genotypic and phenotypic differentiation of strain BH030004T from the type strain of P. chungwhensis. Therefore, strain BH030004T represents a novel species of the genus Pontibacillus, for which the name Pontibacillus marinus sp. nov. is proposed. The type strain is BH030004T (=KCTC 3917T=DSM 16465T).


2010 ◽  
Vol 60 (4) ◽  
pp. 785-789 ◽  
Author(s):  
Young Gun Moon ◽  
Seong Hae Seo ◽  
Soon Dong Lee ◽  
Moon Soo Heo

A novel Gram-stain-negative, aerobic, heterotrophic, obligately halophilic bacterium, designated strain JJM85T, was isolated from beach sand in Jeju, Republic of Korea. Cells were rod-shaped and motile by means of flagella; colonies were pink, convex and smooth with an entire edge. The organism grew at pH 5.0–10.0 and 4–30 °C. Phylogenetic analysis based on 16S rRNA gene sequences showed that the organism belonged to the genus Loktanella of the class Alphaproteobacteria and formed a tight cluster with the type strain of Loktanella hongkongensis (96.0 % sequence similarity). The DNA G+C content and fatty acid profile of the novel strain supported affiliation with the genus Loktanella. However, the novel strain could be differentiated clearly from members of this genus by cell motility, some physiological properties and low 16S rRNA gene sequence similarity (93.1–96.0 %). On the basis of the polyphasic data presented here, strain JJM85T is considered to represent a novel species of the genus Loktanella, for which the name Loktanella pyoseonensis sp. nov. is proposed; the type strain is JJM85T (=KCTC 22372T =DSM 21424T).


2006 ◽  
Vol 56 (11) ◽  
pp. 2653-2656 ◽  
Author(s):  
Byung-Yong Kim ◽  
Hang-Yeon Weon ◽  
Seung-Hee Yoo ◽  
Jong-Shik Kim ◽  
Soon-Wo Kwon ◽  
...  

A marine, Gram-negative, aerobic, motile, straight-rod-shaped, moderately halophilic bacterium, designated strain DD-M3T, was isolated from sea sand in Pohang, Korea. A phylogenetic tree based on 16S rRNA gene sequences showed that the strain fell within the evolutionary radiation encompassed by the genus Marinobacter. The levels of 16S rRNA gene sequence similarity between the novel strain and the type strains of recognized Marinobacter species ranged from 94.2 to 97.6 %, the highest values being with Marinobacter flavimaris SW-145T (97.6 %) and Marinobacter lipolyticus SM19T (96.8 %). The values for DNA–DNA relatedness between isolate DD-M3T and the type strains of the most closely related species, M. flavimaris and M. lipolyticus, were 41 and 36 %, respectively. Strain DD-M3T was characterized as having Q-9 as the predominant respiratory quinone and 16 : 0, summed feature 3 and 18 : 1ω9c as the main fatty acids. The DNA G+C content was 54.1 mol%. On the basis of its phenotypic and genotypic characteristics, DD-M3T represents a novel species of the genus Marinobacter, for which the name Marinobacter koreensis sp. nov. is proposed, with DD-M3T (=KACC 11513T=DSM 17924T) as the type strain.


2011 ◽  
Vol 61 (10) ◽  
pp. 2508-2514 ◽  
Author(s):  
Inmaculada Llamas ◽  
Victoria Béjar ◽  
Fernando Martínez-Checa ◽  
María José Martínez-Cánovas ◽  
Ignacio Molina ◽  
...  

We have undertaken a polyphasic taxonomic study of two halophilic, Gram-negative bacterial strains, N12T and B-100, that produce sulphated exopolysaccharides with biological activity. They were isolated from two different saline soil samples. Both strains grow at NaCl concentrations within the range 3–15 % (w/v) [optimum 5–10 % (w/v)], at 15–37 °C (optimum 20–32 °C) and at pH 6–8 (optimum pH 7–8). Their 16S rRNA gene sequences indicate that they belong to the genus Halomonas in the class Gammaproteobacteria. Their closest relative is Halomonas nitroreducens, to which our strains show maximum 16S rRNA gene sequence similarity values of 98.7 % (N12T) and 98.3 % (B-100). Their DNA G+C contents are 61.9 and 63.8 mol%, respectively. The results of DNA–DNA hybridizations showed 43.9 % relatedness between strain N12T and H. nitroreducens CECT 7281T, 30.5 % between N12T and Halomonas ventosae CECT 5797T, 39.2 % between N12T and Halomonas fontilapidosi CECT 7341T, 46.3 % between N12T and Halomonas maura CECT 5298T, 52.9 % between N12T and Halomonas saccharevitans LMG 23976T, 51.3 % between N12T and Halomonas koreensis JCM 12237T and 100 % between strains N12T and B-100. The major fatty acids of strain N12T are C12 : 0 3-OH (5.42 %), C15 : 0 iso 2-OH/C16 : 1ω7c (17.37 %), C16 : 0 (21.62 %) and C18 : 1ω7c (49.19 %). The proposed name for the novel species is Halomonas stenophila sp. nov. Strain N12T ( = CECT 7744T  = LMG 25812T) is the type strain.


2011 ◽  
Vol 61 (7) ◽  
pp. 1606-1611 ◽  
Author(s):  
Enrico Tortoli ◽  
Erik C. Böttger ◽  
Anna Fabio ◽  
Enevold Falsen ◽  
Zoe Gitti ◽  
...  

Four strains isolated in the last 15 years were revealed to be identical in their 16S rRNA gene sequences to MCRO19, the sequence of which was deposited in GenBank in 1995. In a polyphasic analysis including phenotypic and genotypic features, the five strains (including MCRO19), which had been isolated in four European countries, turned out to represent a unique taxonomic entity. They are scotochromogenic slow growers and are genetically related to the group that included Mycobacterium simiae and 15 other species. The novel species Mycobacterium europaeum sp. nov. is proposed to accommodate these five strains. Strain FI-95228T ( = DSM 45397T  = CCUG 58464T) was chosen as the type strain. In addition, a thorough revision of the phenotypic and genotypic characters of the species related to M. simiae was conducted which leads us to suggest the denomination of the ‘Mycobacterium simiae complex’ for this group.


2007 ◽  
Vol 57 (8) ◽  
pp. 1901-1905 ◽  
Author(s):  
Yu-Qin Zhang ◽  
Li-Yan Yu ◽  
Hong-Yu Liu ◽  
Yue-Qin Zhang ◽  
Li-Hua Xu ◽  
...  

A moderately halophilic bacterium, strain YIM 70202T, was isolated from a desert soil sample collected from Egypt and was subjected to a taxonomic investigation. In a phylogenetic dendrogram based on 16S rRNA gene sequence analysis, strain YIM 70202T was affiliated to the Salinicoccus clade, showing 94.5–96.8 % 16S rRNA gene sequence similarity to the recognized species of the genus Salinicoccus, in which Salinicoccus roseus CCM 3516T was the nearest neighbour. The DNA–DNA relatedness value of the novel isolate with S. roseus CCM 3516T was 12.7 %. The novel isolate grew at temperatures between 4 and 45 °C and at pH values ranging from 7.0 to 11.0, with an optimum of 30 °C and pH 8.0–9.0, respectively. Strain YIM 70202T grew optimally in the presence of 10 % NaCl (w/v) and growth was observed at NaCl concentrations in the range 1–25 % (w/v). Chemotaxonomic data revealed that strain YIM 70202T contained MK-6 as the predominant respiratory quinone, possessed l-Lys–Gly5 as the cell-wall peptidoglycan, had phosphatidylglycerol, diphosphatidylglycerol and an unknown glycolipid as the polar lipids and contained i-C15 : 0 and ai-C15 : 0 as the predominant fatty acids. The DNA G+C content was 49.7 mol%. The biochemical and chemotaxonomic properties demonstrate that strain YIM 70202T represents a novel species of the genus Salinicoccus. The name Salinicoccus luteus sp. nov. is proposed with strain YIM 70202T (=CGMCC 1.6511T=KCTC 3941T) as the type strain.


Author(s):  
Selma Vieira ◽  
Katharina J. Huber ◽  
Meina Neumann-Schaal ◽  
Alicia Geppert ◽  
Manja Luckner ◽  
...  

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1  ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


2015 ◽  
Vol 65 (Pt_6) ◽  
pp. 1895-1901 ◽  
Author(s):  
Helena Lucena-Padrós ◽  
Juan M. González ◽  
Belén Caballero-Guerrero ◽  
José Luis Ruiz-Barba ◽  
Antonio Maldonado-Barragán

Three isolates originating from Spanish-style green-olive fermentations in a manufacturing company in the province of Seville, Spain, were taxonomically characterized by a polyphasic approach. This included a phylogenetic analysis based on 16S rRNA gene sequences and multi-locus sequence analysis (MLSA) based on pyrH, recA, rpoA, gyrB and mreB genes. The isolates shared 98.0 % 16S rRNA gene sequence similarity with Vibrio xiamenensis G21T. Phylogenetic analysis based on 16S rRNA gene sequences using the neighbour-joining and maximum-likelihood methods showed that the isolates fell within the genus Vibrio and formed an independent branch close to V. xiamenensis G21T. The maximum-parsimony method grouped the isolates to V. xiamenensis G21T but forming two clearly separated branches. Phylogenetic trees based on individual pyrH, recA, rpoA, gyrB and mreB gene sequences revealed that strain IGJ1.11T formed a clade alone or with V. xiamenensis G21T. Sequence similarities of the pyrH, recA, rpoA, gyrB and mreB genes between strain IGJ1.11T and V. xiamenensis G21T were 86.7, 85.7, 97.3, 87.6 and 84.8 %, respectively. MLSA of concatenated sequences showed that strain IGJ1.11T and V. xiamenensis G21T are two clearly separated species that form a clade, which we named Clade Xiamenensis, that presented 89.7 % concatenated gene sequence similarity, i.e. less than 92 %. The major cellular fatty acids (>5 %) of strain IGJ1.11T were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). Enzymic activity profiles, sugar fermentation patterns and DNA G+C content (52.9 mol%) differentiated the novel strains from the closest related members of the genus Vibrio. The name Vibrio olivae sp. nov. is proposed for the novel species. The type strain is IGJ1.11T ( = CECT 8064T = DSM 25438T).


Author(s):  
Yuchao Ma ◽  
Zhiqiang Xia ◽  
Xuming Liu ◽  
Sanfeng Chen

Five novel endospore-forming, nitrogen-fixing bacterial strains were isolated from the rhizosphere soils of plants of the species Sabina squamata, Weigela florida and Zanthoxylum simulans. A phylogenetic analysis based on 16S rRNA gene sequences revealed that the five strains formed a distinct cluster within the genus Paenibacillus. These novel strains showed the highest levels (96.2–98.2 %) of 16S rRNA gene sequence similarity with Paenibacillus azotofixans. However, the DNA–DNA relatedness between these novel strains and P. azotofixans was 12.9–29.5 %. The DNA G+C contents of the five strains were found to be 51.9–52.9 mol%. Phenotypic analyses showed that a significant feature of the novel strains (differentiating them from P. azotofixans and other Paenibacillus species) is that all of them were unable to produce acid and gas from various carbohydrates such as glucose, sucrose, lactose and fructose. Anteiso-branched C15 : 0 was the major fatty acid present in the novel type strain. On the basis of these data, the five novel strains represent a novel species of the genus Paenibacillus, for which the name Paenibacillus sabinae sp. nov. is proposed. The type strain is T27T (=CCBAU 10202T=DSM 17841T).


2015 ◽  
Vol 65 (Pt_7) ◽  
pp. 2248-2254 ◽  
Author(s):  
Amit Kumar Singh ◽  
Nidhi Garg ◽  
Rup Lal

A halotolerant, Gram-negative, rod-shaped and light-red-pigmented bacterium, designated LP51T, was isolated from pond sediment near a hexachlorocyclohexane dumpsite located at Chinhat, Lucknow, India. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain LP51T formed a distinct phyletic clade along with the members of the genus Pontibacter. The 16S rRNA gene sequence similarity to members of the genus Pontibacter ranged from 94.2 to 99.4  %. The cells were motile, aerobic and catalase- and oxidase-positive. The major fatty acids were iso-C15  :  0 (17.8  %), iso-C15  :  0 3-OH (8.8  %), iso-C17  :  0 3-OH (5.7  %), summed feature 3 (C16  :  1ω7c and/or C16  :  1ω6c; 6.5  %) and summed feature 4 (iso-C17  :  1 I and/or anteiso-C17  :  1 B; 30.7  %). The polar lipid profile of strain LP51T showed the presence of phosphatidylethanolamine, an unidentified aminophospholipid, unknown aminolipids, unknown polar lipids and unknown glycolipids. DNA–DNA relatedness of strain LP51T with respect to the most closely related type strain, Pontibacter korlensis X14-1T, was 47.2  %. On the basis of this information, it is proposed that the isolate be assigned to a novel species of the genus Pontibacter, for which the name Pontibacter chinhatensis sp. nov. is proposed. The type strain is LP51T ( = CCM 8436T = MCC 2070T).


Sign in / Sign up

Export Citation Format

Share Document