Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae

2006 ◽  
Vol 56 (11) ◽  
pp. 2609-2616 ◽  
Author(s):  
David E. Greenberg ◽  
Stephen F. Porcella ◽  
Frida Stock ◽  
Alexandra Wong ◽  
Patricia S. Conville ◽  
...  

A Gram-negative, aerobic, coccobacillus to rod-shaped bacterium was isolated from three patients with chronic granulomatous disease. The organism was subjected to a polyphasic taxonomic study. A multilocus phylogenetic analysis based on the 16S rRNA gene, the internal transcribed spacer (ITS) region and the RecA protein demonstrated that the organism belongs to a new sublineage within the acetic acid bacteria in the family Acetobacteraceae. Phenotypic features are summarized as follows: the organism grew at an optimum temperature of 35–37 °C and optimum pH of 5.0–6.5. It produced a yellow pigment, oxidized lactate and acetate, the latter weakly, produced little acetic acid from ethanol and could use methanol as a sole carbon source. The two major fatty acids were a straight-chain unsaturated acid (C18 : 1ω7c) and C16 : 0. The DNA base composition was 59.1 mol% G+C. The very weak production of acetic acid from ethanol, the ability to use methanol, the yellow pigmentation and high optimum temperature for growth distinguished this organism from other acetic acid bacteria. The unique phylogenetic and phenotypic characteristics suggest that the bacterium should be classified within a separate genus, for which the name Granulibacter bethesdensis gen. nov., sp. nov. is proposed. The type strain is CGDNIH1T (=ATCC BAA-1260T=DSM 17861T).

2004 ◽  
Vol 54 (2) ◽  
pp. 313-316 ◽  
Author(s):  
Pattaraporn Yukphan ◽  
Wanchern Potacharoen ◽  
Somboon Tanasupawat ◽  
Morakot Tanticharoen ◽  
Yuzo Yamada

Three bacterial strains were isolated from flowers collected in Bangkok, Thailand, by an enrichment-culture approach for acetic acid bacteria. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates were located in the lineage of the genus Asaia but constituted a cluster separate from the type strains of Asaia bogorensis and Asaia siamensis. The DNA base composition of the isolates was 60·2–60·5 mol% G+C, with a range of 0·3 mol%. The isolates constituted a taxon separate from Asaia bogorensis and Asaia siamensis on the basis of DNA–DNA relatedness. The isolates had morphological, physiological, biochemical and chemotaxonomic characteristics similar to those of the type strains of Asaia bogorensis and Asaia siamensis, but the isolates grew on maltose. The major ubiquinone was Q10. On the basis of the results obtained, the name Asaia krungthepensis sp. nov. is proposed for the isolates. The type strain is isolate AA08T (=BCC 12978T=TISTR 1524T=NBRC 100057T=NRIC 0535T), which had a DNA G+C content of 60·3 mol% and was isolated from a heliconia flower (‘paksaasawan’ in Thai; Heliconia sp.) collected in Bangkok, Thailand.


2004 ◽  
Vol 54 (6) ◽  
pp. 2263-2267 ◽  
Author(s):  
Yasuko Jojima ◽  
Yasuhiro Mihara ◽  
Sonoko Suzuki ◽  
Kenzo Yokozeki ◽  
Shigeru Yamanaka ◽  
...  

Three Gram-negative, aerobic, rod-shaped bacterial strains were isolated, from the pollen of Japanese flowers, as producers of xylitol; these strains were subjected to a polyphasic taxonomic study. Phylogenetic analyses of the 16S rRNA gene sequences demonstrated that these three isolates formed a new cluster within a group of acetic acid bacteria in the α-Proteobacteria. The characteristics of the three isolates were as follows: (i) their predominant quinone was Q-10; (ii) their cellular fatty acid profile contained major amounts of 2-hydroxy acids and an unsaturated straight-chain acid (C18 : 1 ω7c); and (iii) their DNA G+C contents were in the range 51·9–52·3 mol%, which is around the lower limit of the reported range for the genera of acetic acid bacteria. The negligible or very weak productivity of acetic acid from ethanol and the osmophilic growth properties distinguished these strains from other acetic acid bacteria. The unique phylogenetic and phenotypic characteristics suggest that the three isolates should be classified within a novel genus and species with the proposed name Saccharibacter floricola gen. nov., sp. nov. The type strain is strain S-877T (=AJ 13480T=JCM 12116T=DSM 15669T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1647-1652 ◽  
Author(s):  
Ilse Cleenwerck ◽  
Nicholas Camu ◽  
Katrien Engelbeen ◽  
Tom De Winter ◽  
Katrien Vandemeulebroecke ◽  
...  

Twenty-three acetic acid bacteria, isolated from traditional heap fermentations of Ghanaian cocoa beans, were subjected to a polyphasic taxonomic study. The isolates were catalase-positive, oxidase-negative, Gram-negative rods. They oxidized ethanol to acetic acid and were unable to produce 2-ketogluconic acid, 5-ketogluconic acid and 2,5-diketogluconic acid from glucose; therefore, they were tentatively identified as Acetobacter species. 16S rRNA gene sequencing and phylogenetic analysis confirmed their position in the genus Acetobacter, with Acetobacter syzygii and Acetobacter lovaniensis as their closest phylogenetic neighbours. (GTG)5-PCR fingerprinting grouped the strains in a cluster that did not contain any type strains of members of the genus Acetobacter. DNA–DNA hybridization with the type strains of all recognized Acetobacter species revealed DNA–DNA relatedness values below the species level. The DNA G+C contents of three selected strains were 56.9–57.3 mol%. The novel strains had phenotypic characteristics that enabled them to be differentiated from phylogenetically related Acetobacter species, i.e. they were motile, did not produce 2-ketogluconic acid or 5-ketogluconic acid from glucose, were catalase-positive and oxidase-negative, grew on yeast extract with 30 % glucose, grew on glycerol (although weakly) but not on maltose or methanol as carbon sources, and did not grow with ammonium as sole nitrogen source and ethanol as carbon source. Based on the genotypic and phenotypic data, the isolates represent a novel species of the genus Acetobacter for which the name Acetobacter ghanensis sp. nov. is proposed. The type strain is R-29337T (=430AT=LMG 23848T=DSM 18895T).


2009 ◽  
Vol 75 (10) ◽  
pp. 3281-3288 ◽  
Author(s):  
Ilias Kounatidis ◽  
Elena Crotti ◽  
Panagiotis Sapountzis ◽  
Luciano Sacchi ◽  
Aurora Rizzi ◽  
...  

ABSTRACT Following cultivation-dependent and -independent techniques, we investigated the microbiota associated with Bactrocera oleae, one of the major agricultural pests in olive-producing countries. Bacterial 16S rRNA gene libraries and ultrastructural analyses revealed the presence of several bacterial taxa associated with this insect, among which Acetobacter tropicalis was predominant. The recent increased detection of acetic acid bacteria as symbionts of other insect model organisms, such as Anopheles stephensi (G. Favia et al., Proc. Natl. Acad. Sci. USA 104:9047-9051, 2007) or Drosophila melanogaster (C. R. Cox and M. S. Gilmore, Infect. Immun. 75:1565-1576, 2007), prompted us to investigate the association established between A. tropicalis and B. oleae. Using an A. tropicalis-specific PCR assay, the symbiont was detected in all insects tested originating from laboratory stocks or field-collected from different locations in Greece. This acetic acid bacterium was successfully established in cell-free medium, and typing analyses, carried out on a collection of isolates, revealed that different A. tropicalis strains are present in fly populations. The capability to colonize and lodge in the digestive system of both larvae and adults and in Malpighian tubules of adults was demonstrated by using a strain labeled with a green fluorescent protein.


2004 ◽  
Vol 54 (4) ◽  
pp. 1287-1293 ◽  
Author(s):  
Xiaolong Cui ◽  
Peter Schumann ◽  
Erko Stackebrandt ◽  
Reiner M. Kroppenstedt ◽  
Rüdiger Pukall ◽  
...  

Strain XLG9A10.2T was isolated from an alkaline salt marsh soil in western China. 16S rRNA gene sequence analysis indicated that strain XLG9A10.2T constitutes a distinct lineage within the family Promicromonosporaceae, sharing 94·8–95·1 % gene similarity with members of the genus Promicromonospora and 94·4–95·7 % similarity with those of Xylanimonas and related genera. The general colony and cell morphology of strain XLG9A10.2T is similar to that of members of Promicromonospora, but differs from members of the genus Xylanimonas in forming a well-developed branching mycelium and production of coccoid spores. Strain XLG9A10.2T shows the peptidoglycan type A4α (l-lys←l-thr←d-Glu), contains glucose, mannose and galactose as whole cell sugars and has MK-9(H4) and MK-9(H6) as major menaquinones, while phospholipids are phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol, three unidentified phospholipids and one unidentified glycolipid. The DNA base composition is 71·9 mol% G+C. On the basis of morphological, chemotaxonomic, metabolic and phylogenetic differences from other species of Promicromonosporaceae, a new genus and species, Myceligenerans xiligouense gen. nov., sp. nov., is proposed. The type strain is XLG9A10.2T (=DSM 15700T=CGMCC 1.3458T.)


2007 ◽  
Vol 57 (2) ◽  
pp. 353-357 ◽  
Author(s):  
Debasree Dutta ◽  
Ratan Gachhui

A few members of the family Acetobacteraceae are cellulose-producers, while only six members fix nitrogen. Bacterial strain RG3T, isolated from Kombucha tea, displays both of these characteristics. A high bootstrap value in the 16S rRNA gene sequence-based phylogenetic analysis supported the position of this strain within the genus Gluconacetobacter, with Gluconacetobacter hansenii LMG 1527T as its nearest neighbour (99.1 % sequence similarity). It could utilize ethanol, fructose, arabinose, glycerol, sorbitol and mannitol, but not galactose or xylose, as sole sources of carbon. Single amino acids such as l-alanine, l-cysteine and l-threonine served as carbon and nitrogen sources for growth of strain RG3T. Strain RG3T produced cellulose in both nitrogen-free broth and enriched medium. The ubiquinone present was Q-10 and the DNA base composition was 55.8 mol% G+C. It exhibited low values of 5.2–27.77 % DNA–DNA relatedness to the type strains of related gluconacetobacters, which placed it within a separate taxon, for which the name Gluconacetobacter kombuchae sp. nov. is proposed, with the type strain RG3T (=LMG 23726T=MTCC 6913T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5665-5670
Author(s):  
Varunya Sakpuntoon ◽  
Jirameth Angchuan ◽  
Chanita Boonmak ◽  
Pannida Khunnamwong ◽  
Noémie Jacques ◽  
...  

Two strains (DMKU-GTCP10-8 and CLIB 1740) representing a novel anamorphic yeast species were isolated from a grease sample collected from a grease trap in Thailand and from an unidentified fungus collected in French Guiana, respectively. On the basis of phylogenetic analysis based on the combined D1/D2 domain of the large subunit (LSU) rRNA gene and the internal transcribed spacer (ITS) region, Lachancea fermentati CBS 707T was the closely related species with 12.8 % sequence divergence (70 nucleotide substitutions and three gaps in 571 nucleotides) and 28.1 % sequence divergence (93 nucleotide substitutions and 90 gaps in 651 nucleotides) in the D1/D2 domain of the LSU rRNA gene and the ITS region, respectively. Phylogenetic analysis based on the concatenated sequences of the five genes including the small subunit rRNA gene, the D1/D2 domain of the LSU rRNA gene, the ITS region, translation elongation factor-1 alpha (TEF1) and RNA polymerase II subunit 2 (RPB2) genes confirmed that the two strains (DMKU-GTCP10-8 and CLIB 1740) were well-separated from other described yeast genera in Saccharomycetaceae. Hence, Savitreea pentosicarens gen. nov., sp. nov. is proposed to accommodate these two strains as members of the family Saccharomycetaceae. The holotype is S. pentosicarens DMKU-GTCP10-8T (ex-type strain TBRC 12159=PYCC 8490; MycoBank number 835044).


Author(s):  
Juan Guzman ◽  
Atena Sadat Sombolestani ◽  
Anja Poehlein ◽  
Rolf Daniel ◽  
Ilse Cleenwerck ◽  
...  

A novel bacterium designated G55GPT and pertaining to the family Acetobacteraceae was isolated from the gut of the Madagascar hissing cockroach Gromphadorhina portentosa. The Gram-negative cells were rod-shaped and non-motile. The complete 16S rRNA sequence of the strain G55GPT showed the highest pairwise similarity to Gluconacetobacter johannae CFN-Cf-55T (95.35 %), suggesting it represents a potential new genus of the family Acetobacteraceae . Phylogenetic analysis based on 16S rRNA gene and 106 orthologous housekeeping protein sequences revealed that G55GPT forms a monophyletic clade with the genus Commensalibacter , which thus far has also been isolated exclusively from insects. The G55GPT genome size was 2.70 Mbp, and the G+C content was 45.4 mol%, which is lower than most acetic acid bacteria (51–68 mol%) but comparable to Swingsia samuiensis AH83T (45.1 mol%) and higher than Commensalibacter intestini A911T (36.8 mol%). Overall genome relatedness indices based on gene and protein sequences strongly supported the assignment of G55GPT to a new genus within the family Acetobacteraceae . The percentage of conserved proteins, which is a useful metric for genus differentiation, was below 54 % when comparing G55GPT to type strains of acetic acid bacteria, thus strongly supporting our hypothesis that G55GPT is a member of a yet-undescribed genus. The fatty acid composition of G55GPT differed from that of closely related acetic acid bacteria, particularly given the presence of C19 : 1  ω9c/ω11c and the absence of C14 : 0 and C14 : 0 2-OH fatty acids. Strain G55GPT also differed in terms of metabolic features such as its ability to produce acid from d-mannitol, and its inability to produce acetic acid from ethanol or to oxidize glycerol to dihydroxyacetone. Based on the results of combined genomic, phenotypic and phylogenetic characterizations, isolate G55GPT (=LMG 31394T=DSM 111244T) is considered to represent a new species in a new genus, for which we propose the name Entomobacter blattae gen. nov., sp. nov.


2010 ◽  
Vol 60 (5) ◽  
pp. 1103-1107 ◽  
Author(s):  
K. Sucharita ◽  
E. Shiva Kumar ◽  
Ch. Sasikala ◽  
B. B. Panda ◽  
S. Takaichi ◽  
...  

An anoxygenic, phototrophic gammaproteobacterium designated strain JA418T was isolated from a sediment sample collected from the Baitarani River, Orissa, India. The bacterium was a Gram-negative, motile rod with a single polar flagellum. Bacteriochlorophyll a and rhodopin were the major photosynthetic pigments. The organism grew best at slightly alkaline pH (8–8.5) and lacked chemotrophic growth. The major fatty acids were C16 : 0, C16 : 1 ω7c/C16 : 1 ω6c and C18 : 1 ω7c. A phylogenetic tree based on 16S rRNA gene sequence analysis showed that strain JA418T clusters with species of the genus Marichromatium belonging to the class Gammaproteobacteria. The highest 16S rRNA gene sequence similarities of strain JA418T were found with the type strains of Marichromatium gracile (95.9 %), Marichromatium indicum (95.6 %), Marichromatium purpuratum (95.5 %) and Marichromatium bheemlicum (95.6 %). The DNA base composition of strain JA418T was 71.4 mol% G+C (by HPLC). Based on the 16S rRNA gene sequence analysis and physiological and chemotaxonomic characteristics, strain JA418T is sufficiently different from other Marichromatium species to merit the description of a novel species, Marichromatium fluminis sp. nov., to accommodate it. The type strain is JA418T (=KCTC 5717T =NBRC 105221T).


Sign in / Sign up

Export Citation Format

Share Document