Identification of new conserved and variable regions in the 16S rRNA gene of acetic acid bacteria and acetobacteraceae family

2015 ◽  
Vol 49 (5) ◽  
pp. 668-677 ◽  
Author(s):  
S. Chakravorty ◽  
S. Sarkar ◽  
R. Gachhui
2017 ◽  
Author(s):  
Garold Fuks ◽  
Michael Elgart ◽  
Amnon Amir ◽  
Amit Zeisel ◽  
Peter J. Turnbaugh ◽  
...  

AbstractBackgroundMost of our knowledge about the remarkable microbial diversity on Earth comes from sequencing the 16S rRNA gene. The use of next-generation sequencing methods has increased sample number and sequencing depth, but the read length of the most widely used sequencing platforms today is quite short, requiring the researcher to choose a subset of the gene to sequence (typically 16-33% of the total length). Thus, many bacteria may share the same amplified region and the resolution of profiling is inherently limited. Platforms that offer ultra long read lengths, whole genome shotgun sequencing approaches, and computational frameworks formerly suggested by us and by others, all allow different ways to circumvent this problem yet suffer various shortcomings. There is need for a simple and low cost 16S rRNA gene based profiling approach that harnesses the short read length to provide a much larger coverage of the gene to allow for high resolution, even in harsh conditions of low bacterial biomass and fragmented DNA.ResultsThis manuscript suggests Short MUltiple Regions Framework (SMURF), a method to combine sequencing results from different PCR-amplified regions to provide one coherent profiling. The de facto amplicon length is the total length of all amplified regions, thus providing much higher resolution compared to current techniques. Computationally, the method solves a convex optimization problem that allows extremely fast reconstruction and requires only moderate memory. We demonstrate the increase in resolution by in silico simulations and by profiling two mock mixtures and real-world biological samples. Reanalyzing a mock mixture from the Human Microbiome Project achieved about two-fold improvement in resolution when combing two independent regions. Using a custom set of six primer pairs spanning about 1200bp (80%) of the 16S rRNA gene we were able to achieve ~100 fold improvement in resolution compared to a single region, over a mock mixture of common human gut bacterial isolates. Finally, profiling of a Drosophila melanogaster microbiome using the set of six primer pairs provided a ~100 fold increase in resolution, and thus enabling efficient downstream analysis.ConclusionsSMURF enables identification of near full-length 16S rRNA gene sequences in microbial communities, having resolution superior compared to current techniques. It may be applied to standard sample preparation protocols with very little modifications. SMURF also paves the way to high-resolution profiling of low-biomass and fragmented DNA, e.g., in the case of Formalin-fixed and Paraffin-embedded samples, fossil-derived DNA or DNA exposed to other degrading conditions. The approach is not restricted to combining amplicons of the 16S rRNA gene and may be applied to any set of amplicons, e.g., in Multilocus Sequence Typing (MLST).


2014 ◽  
Author(s):  
Catherine Burke ◽  
Aaron E Darling

We describe a method for sequencing full-length 16S rRNA gene amplicons using the high throughput Illumina MiSeq platform. The resulting sequences have about 100-fold higher accuracy than standard Illumina reads and are chimera filtered using information from a single molecule dual tagging scheme that boosts the signal available for chimera detection. We demonstrate that the data provides fine scale phylogenetic resolution not available from Illumina amplicon methods targeting smaller variable regions of the 16S rRNA gene.


2019 ◽  
Vol 18 (29) ◽  
pp. 766-773
Author(s):  
OUATTARA Assiètta ◽  
Marius SOMDA K. ◽  
T. Cheik OUATTARA A. ◽  
N’DOYE Bassirou ◽  
TRAORE Alfred ◽  
...  

2002 ◽  
Vol 68 (8) ◽  
pp. 4130-4131 ◽  
Author(s):  
John E. Moore ◽  
Mark McCalmont ◽  
Jiru Xu ◽  
B. Cherie Millar ◽  
Neville Heaney

ABSTRACT A gram-negative bacillus was isolated from a batch of fruit-flavored bottled water, which had spoiled as a result of bacterial overgrowth (>106 CFU/ml). The spoilage organism was extremely difficult to identify phenotypically and was poorly identified as Pasturella sp. (78.7% identification profile) employing the API 20NE identification scheme, which gave the profile 5040000. Molecular identification through PCR amplification of a partial region of the 16S rRNA gene followed by direct automated sequencing of the PCR amplicon allowed identification of the organism. Due to the sequence identity (100%) between the spoilage organism and a reference strain in GenBank, the spoilage isolate was considered to be an Asaia sp., a recently described genus and member of the acetic acid bacteria. This is the first report of Asaia sp. causing spoilage of a foodstuff and highlights the benefits of molecular identification techniques based on 16S rRNA gene sequences in the identification of unusual spoilage organisms.


Author(s):  
Jessica L. O’Callaghan ◽  
Dana Willner ◽  
Melissa Buttini ◽  
Flavia Huygens ◽  
Elise S. Pelzer

The endometrial cavity is an upper genital tract site previously thought as sterile, however, advances in culture-independent, next-generation sequencing technology have revealed that this low-biomass site harbors a rich microbial community which includes multiple Lactobacillus species. These bacteria are considered to be the most abundant non-pathogenic genital tract commensals. Next-generation sequencing of the female lower genital tract has revealed significant variation amongst microbial community composition with respect to Lactobacillus sp. in samples collected from healthy women and women with urogenital conditions. The aim of this study was to evaluate our ability to characterize members of the genital tract microbial community to species-level taxonomy using variable regions of the 16S rRNA gene. Samples were interrogated for the presence of microbial DNA using next-generation sequencing technology that targets the V5–V8 regions of the 16S rRNA gene and compared to speciation using qPCR. We also performed re-analysis of published data using alternate variable regions of the 16S rRNA gene. In this analysis, we explore next-generation sequencing of clinical genital tract isolates as a method for high throughput identification to species-level of key Lactobacillus sp. Data revealed that characterization of genital tract taxa is hindered by a lack of a consensus protocol and 16S rRNA gene region target allowing comparison between studies.


2000 ◽  
Vol 38 (3) ◽  
pp. 953-959 ◽  
Author(s):  
M. S. Hughes ◽  
G. James ◽  
N. Ball ◽  
M. Scally ◽  
R. Malik ◽  
...  

PCR amplifications of the 16S rRNA gene were performed on 46 specimens obtained from 43 dogs with canine leproid granuloma syndrome to help determine its etiology. Sequence capture PCR was applied to 37 paraffin-embedded specimens from 37 dogs, and nested PCR was attempted on DNA from 9 fresh tissue specimens derived from 3 of the 37 aforementioned dogs and from an additional 6 dogs. Molecular analyses of the paraffin-embedded tissues and fresh tissue specimen analyses were performed at separate institutions. PCR products with identical sequences over a 350-bp region encompassing variable regions 2 and 3 of the 16S rRNA gene were obtained from 4 of 37 paraffin-embedded specimens and from all 9 specimens of fresh tissue originating from 12 of the 43 dogs. Identical sequences were determined from amplicons obtained from paraffin-embedded and fresh specimens from one dog. The consensus DNA sequence, amplified from paraffin-embedded tissue and represented by GenBank accession no. AF144747, shared highest nucleotide identity (99.4% over 519 bp) with mycobacterial strain IWGMT 90413 but did not correspond exactly to any EMBL or GenBank database sequence. With a probe derived from the V2 region of the novel canine sequence, reverse cross blot hybridization identified an additional four paraffin-embedded specimens containing the same novel sequence. In total, molecular methodologies identified the proposed novel mycobacterial sequence in 16 of 43 dogs with canine leproid granuloma syndrome, indicating that the species represented by this sequence may be the principal etiological agent of canine leproid granuloma syndrome.


2013 ◽  
Vol 79 (17) ◽  
pp. 5112-5120 ◽  
Author(s):  
James J. Kozich ◽  
Sarah L. Westcott ◽  
Nielson T. Baxter ◽  
Sarah K. Highlander ◽  
Patrick D. Schloss

ABSTRACTRapid advances in sequencing technology have changed the experimental landscape of microbial ecology. In the last 10 years, the field has moved from sequencing hundreds of 16S rRNA gene fragments per study using clone libraries to the sequencing of millions of fragments per study using next-generation sequencing technologies from 454 and Illumina. As these technologies advance, it is critical to assess the strengths, weaknesses, and overall suitability of these platforms for the interrogation of microbial communities. Here, we present an improved method for sequencing variable regions within the 16S rRNA gene using Illumina's MiSeq platform, which is currently capable of producing paired 250-nucleotide reads. We evaluated three overlapping regions of the 16S rRNA gene that vary in length (i.e., V34, V4, and V45) by resequencing a mock community and natural samples from human feces, mouse feces, and soil. By titrating the concentration of 16S rRNA gene amplicons applied to the flow cell and using a quality score-based approach to correct discrepancies between reads used to construct contigs, we were able to reduce error rates by as much as two orders of magnitude. Finally, we reprocessed samples from a previous study to demonstrate that large numbers of samples could be multiplexed and sequenced in parallel with shotgun metagenomes. These analyses demonstrate that our approach can provide data that are at least as good as that generated by the 454 platform while providing considerably higher sequencing coverage for a fraction of the cost.


2013 ◽  
Vol 2 (1s) ◽  
pp. 5 ◽  
Author(s):  
Noelia Isabel Sagarzazu ◽  
Maribel Martínez ◽  
Cristina Algarra ◽  
Javier Butrón ◽  
Carlos J. González-Navarro ◽  
...  

This paper evaluates the use of denaturing high performance liquid chromatography (DHPLC) technology for the discrimination of genetic differences in the 16S rRNA and alcohol dehydrogenase (AdhA) genes among bacterial species based on its efficiency and sensitivity to enable the detection and discrimination of different genetic sequences. In order to optimize DHPLC protocols for the analysis of 16S rRNA gene fragments amplified from bacteria, DNA isolated from 22 different strains representing main bacterial groups of interest in food microbiology was analyzed. While the use of 16S rRNA gene did not allow to difference two wild strains of <em>Acetobacter malorum</em>, this region revealed as useful to differentiate them from some pathogenic bacteria as <em>Escherichia coli</em>, <em>Salmonella typhimurium</em>, <em>Listeria monocytogenes</em>, <em>Listeria innocua</em>, <em>Clostridium perfringens </em>or <em>Sthapylococcus aureus</em>, from spoilage microorganisms as <em>Xantomonas vesicatoria</em> and <em>Alicyclobacillus</em> spp., and also from lactic acid bacteria as <em>Lactobacillus plantarum</em>, <em>Lactobacillus casei</em>, <em>Lactobacillus sakei</em>, <em>Lactobacillus acidophilus</em>, <em>Streptococcus thermophilus </em>and <em>Lactococcus lactis</em> that may suppose technological risk during vinegar production. The results demonstrate that 16S rRNA gene region is not adequate for the discrimination of the acetic acid bacteria (AAB) strains, so AdhA gene was selected to identify the two wild strains of <em>Acetobacter malorum</em>. Also 6 different reference strains of AAB were separated based on differences in AdhA gene region. DHPLC technology is able to discriminate between these two wild strains of <em>A. malorum</em> based on differences existing in the AdhA gene region. The data obtained indicate that the technique is capable of identifying most bacteria at species level and even at strain level with optimization of the protocols. This is of particular relevance in the case of AAB due to their poor recovery on culture media and difficulties in detection of viable but non cultivable cells.


Sign in / Sign up

Export Citation Format

Share Document