scholarly journals Salicola salis sp. nov., an extremely halophilic bacterium isolated from Ezzemoul sabkha in Algeria

2006 ◽  
Vol 56 (11) ◽  
pp. 2647-2652 ◽  
Author(s):  
Karima Kharroub ◽  
Margarita Aguilera ◽  
Teresa Quesada ◽  
José Antonio Morillo ◽  
Alberto Ramos-Cormenzana ◽  
...  

A novel, extremely halophilic bacterium was isolated from brine samples collected from Ezzemoul sabkha in north-east Algeria. Cells of this isolate, designated B2T, were Gram-negative, rod-shaped and motile. Growth occurred between 10 and 25 % (w/v) NaCl and the isolate grew optimally at 15–20 % (w/v) NaCl. The pH range for growth was 6.0–9.0 with an optimum at pH 7.0–7.5. The predominant fatty acids were C16 : 0 and C18 : 1 ω9c. Other fatty acids present were C16 : 1 ω9c, C18 : 0 10-methyl, C12 : 0 3-OH, C10 : 0 and C12 : 0. The G+C content of the genomic DNA was 56.0 mol%. 16S rRNA gene sequence analysis indicated that strain B2T was closely related to Salicola marasensis in the Gammaproteobacteria. The level of 16S rRNA gene sequence similarity between strain B2T and the type strain of Salicola marasensis was 99 %. DNA–DNA hybridization experiments between strain B2T and Salicola marasensis indicated a level of relatedness of 52 %. The phenotypic characteristics of strain B2T allowed its differentiation from recognized species of the genus Salicola. Strain B2T was able to hydrolyse starch but not aesculin. It was unable to use carbohydrates and could not use citrate, pyruvate or succinate as sole carbon and energy sources. On the basis of the polyphasic data presented, strain B2T is considered to represent a novel species of the genus Salicola, for which the name Salicola salis sp. nov. is proposed. The type strain is B2T (=CECT 7106T=LMG 23122T).

2010 ◽  
Vol 60 (3) ◽  
pp. 526-530 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Young-Ah Jeon ◽  
...  

Two aerobic, Gram-positive, rod-shaped bacterial strains, 5YN10-14T and GR21-5T, were isolated from the Yongneup wetland and ginseng soil in Korea, respectively. The two strains formed ellipsoidal or oval spores positioned centrally or paracentrally in swollen sporangia. On the basis of 16S rRNA gene sequence analysis, these strains were related to members of the genus Cohnella. 16S rRNA gene sequence similarity between strains 5YN10-14T and GR21-5T was 95.9 %. Strains 5YN10-14T and GR21-5T showed, respectively, 94.3 and 95.2 % 16S rRNA gene sequence similarity to Cohnella thermotolerans CCUG 47242T, 94.6 and 94.4 % to Cohnella hongkongensis HKU3T, 94.7 and 94.7 % to Cohnella laeviribosi RI-39T, and 95.4 and 94.8 % to Cohnella phaseoli GSPC1T. The major fatty acids of strain 5YN10-14T were anteiso-C15 : 0 (51.1 %), iso-C16 : 0 (18.5 %) and C16 : 0 (13.2 %), and the major fatty acids of strain GR21-5T were anteiso-C15 : 0 (48.9 %), iso-C16 : 0 (15.0 %) and iso-C15 : 0 (12.2 %). The two strains contained menaquinone with seven isoprene units (MK-7) as the predominant quinone, and diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine as major polar lipids; however, strain 5YN10-14T also contained lysylphosphatidylglycerol as a major polar lipid, whereas strain GR21-5T had an unknown aminophospholipid as another major polar lipid. The DNA G+C contents of strains 5YN10-14T and GR21-5T were 58.8 and 61.3 mol%, respectively. Based on the results of the phylogenetic and phenotypic data presented, it was concluded that the two strains represent two novel species of the genus Cohnella, for which the names Cohnella yongneupensis sp. nov. (type strain 5YN10-14T=KACC 11768T=DSM 18998T) and Cohnella ginsengisoli sp. nov. (type strain GR21-5T=KACC 11771T=DSM 18997T) are proposed.


2011 ◽  
Vol 61 (2) ◽  
pp. 384-391 ◽  
Author(s):  
Wolfgang Eder ◽  
Gerhard Wanner ◽  
Wolfgang Ludwig ◽  
Hans-Jürgen Busse ◽  
Frank Ziemke-Kägeler ◽  
...  

A Gram-negative, oxidase- and catalase-positive, flagellated, rod-shaped bacterium, designated strain EM 1T, was isolated from purified water. 16S rRNA gene sequence analysis indicated that the novel strain belonged to the family Oxalobacteraceae within the class Betaproteobacteria; the closest phylogenetic relative was Undibacterium pigrum DSM 19792T (96.7 % gene sequence similarity). The new isolate could be distinguished from the type strain of U. pigrum DSM 19792T (=CCUG 49009T=CIP 109318T) and from strain CCUG 49012T, which has been described as a second genomovar of this species, on the basis of genotypic data and several phenotypic properties. An S-layer was present in the cell envelope in U. pigrum DSM 19792T, but was absent in strains EM 1T and CCUG 49012T. Test conditions were established that enabled strain CCUG 49012T to be distinguished from U. pigrum DSM 19792T. As found for U. pigrum, the main fatty acids of strains EM 1T and CCUG 49012T were summed feature 3 (including unsaturated C16 : 1 ω7c), straight-chain C16 : 0 and unsaturated C18 : 1 ω7c (low percentage in strain CCUG 49012T), and C10 : 0 3-OH was the sole hydroxylated fatty acid. The polar lipid profile consisted of the predominant lipids phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The polyamine profile was mainly composed of the major compound putrescine and moderate amounts of 2-hydroxyputrescine. In contrast to U. pigrum and strain CCUG 49012T, where ubiquinone Q8 was reported as the sole quinone component, the quinone system of strain EM 1T consisted of ubiquinone Q-8 (64 %) and Q-7 (36 %). The 16S rRNA gene sequence similarity, the polar lipid profile and the absence of C12-hydroxylated fatty acids all indicated that strain EM 1T was affiliated with the genus Undibacterium. 16S rRNA gene sequence similarity values lower than 97.0 % and several differentiating phenotypic traits demonstrated that strain EM 1T represents a novel species for which the name Undibacterium oligocarboniphilum sp. nov. is proposed (type strain EM 1T=DSM 21777T=CCUG 57265T). In addition, based on previously published results and this study, a separate species, Undibacterium parvum sp. nov., is proposed with strain CCUG 49012T (=DSM 23061T=CIP 109317T) as the type strain.


2005 ◽  
Vol 55 (2) ◽  
pp. 885-889 ◽  
Author(s):  
In-Gi Kim ◽  
Mi-Hwa Lee ◽  
Seo-Youn Jung ◽  
Jae Jun Song ◽  
Tae-Kwang Oh ◽  
...  

Three Gram-variable, rod-shaped bacterial strains, TF-16T, TF-19 and TF-80T, were isolated from a tidal flat of Daepo Beach (Yellow Sea) near Mokpo City, Korea, and their taxonomic positions were investigated by a polyphasic approach. These isolates grew optimally in the presence of 2 % NaCl and at 30 °C. Their peptidoglycan types were based on l-Lys–Gly. The predominant menaquinone detected in the three strains was MK-7. The three strains contained large amounts of the branched fatty acids iso-C17 : 0, anteiso-C13 : 0, iso-C13 : 0 and iso-C15 : 0. The DNA G+C contents of strains TF-16T, TF-19 and TF-80T were 48·6, 48·4 and 48·0 mol%, respectively. The three strains formed a coherent cluster with Exiguobacterium species in a phylogenetic tree based on 16S rRNA gene sequences. They showed closest phylogenetic affiliation to Exiguobacterium aurantiacum, with 16S rRNA gene sequence similarity values of 98·1–98·3 %. The three strains exhibited 16S rRNA gene sequence similarity values of 94·0–94·6 % to the type strains of other Exiguobacterium species. Levels of DNA–DNA relatedness indicated that strains TF-16T and TF-19 and strain TF-80T are members of two species that are separate from E. aurantiacum. On the basis of phenotypic, phylogenetic and genetic data, strains TF-16T and TF-19 and strain TF-80T represent two novel species in the genus Exiguobacterium; the names Exiguobacterium aestuarii sp. nov. (type strain TF-16T=KCTC 19035T=DSM 16306T; reference strain TF-19) and Exiguobacterium marinum sp. nov. (type strain TF-80T=KCTC 19036T=DSM 16307T) are proposed.


2010 ◽  
Vol 60 (4) ◽  
pp. 949-952 ◽  
Author(s):  
Soo-Jin Kim ◽  
Hang-Yeon Weon ◽  
Yi-Seul Kim ◽  
Rangasamy Anandham ◽  
Seung-Hee Yoo ◽  
...  

An ivory-coloured bacterium, designated strain 5YN7-3T, was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3T belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8T (97.8 %), Kaistia granuli Ko04T (97.6 %) and Kaistia adipata Chj404T (97.4 %). Strain 5YN7-3T showed DNA–DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04T, K. soli 5YN9-8T and K. adipata Chj404T, respectively. The major fatty acids were C18 : 1 ω7c (51.2 %), C19 : 0 cyclo ω8c (25.0 %), C18 : 0 (12.9 %) and C16 : 0 (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA–DNA hybridization data clearly define strain 5YN7-3T as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3T (=KACC 12910T =DSM 21341T).


2011 ◽  
Vol 61 (8) ◽  
pp. 1954-1961 ◽  
Author(s):  
An Coorevits ◽  
Niall A. Logan ◽  
Anna E. Dinsdale ◽  
Gillian Halket ◽  
Patsy Scheldeman ◽  
...  

A polyphasic taxonomic study was performed on 22 thermotolerant, aerobic, endospore-forming bacteria from dairy environments. Seventeen isolates were retrieved from raw milk, one from a filter cloth and four from grass, straw or milking equipment. These latter four isolates (R-6546, R-7499, R-7764 and R-7440) were identified as Bacillus thermoamylovorans based on DNA–DNA hybridizations (values above 70 % with Bacillus thermoamylovorans LMG 18084T) but showed discrepancies in characteristics with the original species description, so an emended description of this species is given. According to 16S rRNA gene sequence analysis and DNA–DNA hybridization experiments, the remaining 18 isolates (R-6488T, R-28193, R-6491, R-6492, R-7336, R-33367, R-6486, R-6770, R-31288, R-28160, R-26358, R-7632, R-26955, R-26950, R-33520, R-6484, R-26954 and R-7165) represented one single species, most closely related to Bacillus thermoamylovorans (93.9 % 16S rRNA gene sequence similarity), for which the name Bacillus thermolactis is proposed. Cells were Gram-stain-positive, facultatively anaerobic, endospore-forming rods that grew optimally at 40–50 °C. The cell wall peptidoglycan type of strain R-6488T, the proposed type strain, was A1γ based on meso-diaminopimelic acid. Major fatty acids of the strains were C16 : 0 (28.0 %), iso-C16 : 0 (12.1 %) and iso-C15 : 0 (12.0 %). MK-7 was the predominant menaquinone, and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and some unidentified phospholipids. DNA G+C content was 35.0 mol%. Phenotypic properties allowed discrimination from other thermotolerant species of the genus Bacillus and supported the description of the novel species Bacillus thermolactis, with strain R-6488T ( = LMG 25569T  = DSM 23332T) as the proposed type strain.


2005 ◽  
Vol 55 (4) ◽  
pp. 1563-1568 ◽  
Author(s):  
Jarkko Rapala ◽  
Katri A. Berg ◽  
Christina Lyra ◽  
R. Maarit Niemi ◽  
Werner Manz ◽  
...  

Thirteen bacterial isolates from lake sediment, capable of degrading cyanobacterial hepatotoxins microcystins and nodularin, were characterized by phenotypic, genetic and genomic approaches. Cells of these isolates were Gram-negative, motile by means of a single polar flagellum, oxidase-positive, weakly catalase-positive and rod-shaped. According to phenotypic characteristics (carbon utilization, fatty acid and enzyme activity profiles), the G+C content of the genomic DNA (66·1–68·0 mol%) and 16S rRNA gene sequence analysis (98·9–100 % similarity) the strains formed a single microdiverse genospecies that was most closely related to Roseateles depolymerans (95·7–96·3 % 16S rRNA gene sequence similarity). The isolates assimilated only a few carbon sources. Of the 96 carbon sources tested, Tween 40 was the only one used by all strains. The strains were able to mineralize phosphorus from organic compounds, and they had strong leucine arylamidase and chymotrypsin activities. The cellular fatty acids identified from all strains were C16 : 0 (9·8–19 %) and C17 : 1 ω7c (<1–5·8 %). The other predominant fatty acids comprised three groups: summed feature 3 (<1–2·2 %), which included C14 : 0 3-OH and C16 : 1 iso I, summed feature 4 (54–62 %), which included C16 : 1 ω7c and C15 : 0 iso OH, and summed feature 7 (8·5–28 %), which included ω7c, ω9c and ω12t forms of C18 : 1. A more detailed analysis of two strains indicated that C16 : 1 ω7c was the main fatty acid. The phylogenetic and phenotypic features separating our strains from recognized bacteria support the creation of a novel genus and species, for which the name Paucibacter toxinivorans gen. nov., sp. nov. is proposed. The type strain is 2C20T (=DSM 16998T=HAMBI 2767T=VYH 193597T).


2021 ◽  
Author(s):  
Tomoyuki Konishi ◽  
Tomohiko Tamura ◽  
Toru Tobita ◽  
Saori Sakai ◽  
Namio Matsuda ◽  
...  

Abstract Gram-positive, rod-shaped, spore-forming, thermophilic, acidophilic bacterium, designated strain skT53T, was isolated from farm soil in Tokyo, Japan. The strain grew aerobically at 37–55°C (optimum 50°C) and pH 4.0–6.0 (optimum 5.0). Phylogenetic analysis of the 16S rRNA gene sequence showed that the isolate was most closely related to the type strain of Effusibacillus consociatus (94.3% similarity). The G + C content of the genomic DNA was 48.22 mol%. MK-7 was the predominant respiratory quinone. The major fatty acids were anteiso-C15:0, iso-C15:0, iso-C16:0 and C18:3ω6c. The results of phenotypic and chemotaxonomic, 16S rRNA gene sequence similarity, and whole genome analyses support strain skT53T as representing a novel species of Effusibacillus dendaii sp. nov. is proposed. The type strain is strain skT53T (= NBRC 114101T = TBRC 11241T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3965-3970 ◽  
Author(s):  
Estelle Jumas-Bilak ◽  
Philippe Bouvet ◽  
Emma Allen-Vercoe ◽  
Fabien Aujoulat ◽  
Paul A. Lawson ◽  
...  

Five human clinical isolates of an unknown, strictly anaerobic, slow-growing, Gram-stain-negative, rod-shaped micro-organism were subjected to a polyphasic taxonomic study. Comparative 16S rRNA gene sequence-based phylogeny showed that the isolates grouped in a clade that included members of the genera Pyramidobacter, Jonquetella, and Dethiosulfovibrio; the type strain of Pyramidobacter piscolens was the closest relative with 91.5–91.7 % 16S rRNA gene sequence similarity. The novel strains were mainly asaccharolytic and unreactive in most conventional biochemical tests. Major metabolic end products in trypticase/glucose/yeast extract broth were acetic acid and propionic acid and the major cellular fatty acids were C13 : 0 and C16 : 0, each of which could be used to differentiate the strains from P. piscolens. The DNA G+C content based on whole genome sequencing for the reference strain 22-5-S 12D6FAA was 57 mol%. Based on these data, a new genus, Rarimicrobium gen. nov., is proposed with one novel species, Rarimicrobium hominis sp. nov., named after the exclusive and rare finding of the taxon in human samples. Rarimicrobium is the fifth genus of the 14 currently characterized in the phylum Synergistetes and the third one in subdivision B that includes human isolates. The type strain of Rarimicrobium hominis is ADV70T ( = LMG 28163T = CCUG 65426T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3885-3893 ◽  
Author(s):  
Sandra Baumgardt ◽  
Igor Loncaric ◽  
Peter Kämpfer ◽  
Hans-Jürgen Busse

Two Gram-stain-positive bacterial isolates, strain 2385/12T and strain 2673/12T were isolated from a tapir and a dog's nose, respectively. The two strains were rod to coccoid-shaped, catalase-positive and oxidase-negative. The highest 16S rRNA gene sequence similarity identified Corynebacterium singulare CCUG 37330T (96.3 % similarity) as the nearest relative of strain 2385/12T and suggested the isolate represented a novel species. Corynebacterium humireducens DSM 45392T (98.7 % 16S rRNA gene sequence similarity) was identified as the nearest relative of strain 2673/12T. Results from DNA–DNA hybridization with the type strain of C. humireducens demonstrated that strain 2673/12T also represented a novel species. Strain 2385/12T showed a quinone system consisting predominantly of menaquinones MK-8(H2) and MK-9(H2) whereas strain 2673/12T contained only MK-8(H2) as predominant quinone. The polar lipid profiles of the two strains showed the major compounds phosphatidylglycerol, diphosphatidylglycerol and an unidentified glycolipid. Phosphatidylinositol was identified as another major lipid in 2673/12T whereas it was only found in moderate amounts in strain 2385/12T. Furthermore, moderate to minor amounts of phosphatidylinositol-mannoside, β-gentiobiosyl diacylglycerol and variable counts of several unidentified lipids were detected in the two strains. Both strains contained corynemycolic acids. The polyamine patterns were characterized by the major compound putrescine in strain 2385/12T and spermidine in strain 2673/12T. In the fatty acid profiles, predominantly C18 : 1ω9c and C16 : 0 were detected. The two strains are distinguishable from each other and the nearest related established species of the genus Corynebacterium phylogenetically and phenotypically. In conclusion, two novel species of the genus Corynebacterium are proposed, namely Corynebacterium tapiri sp. nov. (type strain, 2385/12T = CCUG 65456T = LMG 28165T) and Corynebacterium nasicanis sp. nov. (type strain, 2673/12T = CCUG 65455T = LMG 28166T).


Author(s):  
Zhipeng Cai ◽  
Huibin Lu ◽  
Youfeng Qian ◽  
Letian Chen ◽  
Meiying Xu

Four Gram-stain-negative, catalase- and oxidase-positive, rod-shaped and motile strains (Y26, Y57T, ZJ14WT and RP18W) were isolated from mariculture fishponds in PR China. Comparisons based on 16S rRNA gene sequences showed that strains Y26 and Y57T share 16S rRNA gene sequence similarities in the range of 95.1−98.5 % with species of the genus Bowmanella , and strains ZJ14WT and RP18W share 16S rRNA gene sequence similarities in the range of 96.7 −98.8 % with species of the genus Amphritea , respectively. The genome sizes of strains Y26, Y57T, ZJ14WT and RP18W were about 4.85, 5.40, 4.70 and 4.70 Mbp with 49.5, 51.7, 51.2 and 51.3 mol% G+C content, respectively. The calculated pairwise OrthoANIu values among strains Y26, Y57T and species of the genus Bowmanella were in the range of 72.6−83.1 %, but the value between strains Y26 and Y57T was 96.2 %. The pairwise OrthoANIu values among strains ZJ14WT, RP18W and other species of the genus Amphritea were all less than 93.9 %, but the value between strains ZJ14WT and RP18W was 99.3 %. Q-8 was the major respiratory quinone of strains Y26, Y57T, ZJ14WT and RP18W, and the major fatty acids of these strains were all C16 : 1 ω7c, C16 : 0 and C18 : 1 ω7c. The predominant polar lipids of strains Y26 and Y57T included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylinositol, but strains ZJ14WT and RP18W only contained phosphatidylethanolamine and phosphatidylglycerol. Combining phenotypic, biochemical and genotypic characteristics, strains Y26 and Y57T should belong to the same species and represent a novel member of the genus Bowmanella , and strains ZJ14WT and RP18W should belong to the same species and represent a novel member of the genus Amphritea , for which the names Bowmanella yangjiangensis sp. nov. (type strain Y57T=GDMCC 1.2180T=KCTC 82439T) and Amphritea pacifica sp. nov. (type strain ZJ14WT=GDMCC 1.2203T=KCTC 82438T) are proposed.


Sign in / Sign up

Export Citation Format

Share Document