scholarly journals Halobacillus faecis sp. nov., a spore-forming bacterium isolated from a mangrove area on Ishigaki Island, Japan

2007 ◽  
Vol 57 (11) ◽  
pp. 2476-2479 ◽  
Author(s):  
Sun-Young An ◽  
Kaneo Kanoh ◽  
Hiroaki Kasai ◽  
Keiichi Goto ◽  
Akira Yokota

A Gram-positive, spore-forming, rod-shaped halophilic bacterial strain, IGA7-4T, was isolated from a mangrove area on Ishigaki Island (Japan), and was characterized taxonomically using a polyphasic approach. Strain IGA7-4T was strictly aerobic and non-motile and formed central endospores. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain IGA7-4T is affiliated to the genus Halobacillus, and exhibits sequence similarities of 99.6–98.0 % to the type strains of Halobacillus species. Levels of DNA–DNA relatedness between strain IGA7-4T and the type strains of Halobacillus species were 9.5–46.6 %. The DNA G+C content of strain IGA7-4T was 46.5 mol%. The cell-wall peptidoglycan type (Orn–Asp), major cellular fatty acids (anteiso-C15 : 0, anteiso-C17 : 0, iso-C15 : 0 and iso-C16 : 0) and quinone type (MK-7) of the isolate support its affiliation to the genus Halobacillus. On the basis of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data, the isolate represents a novel species of the genus Halobacillus, for which the name Halobacillus faecis sp. nov. is proposed. The type strain is IGA7-4T (=MBIC08268T=IAM 15427T=KCTC 13121T).

2007 ◽  
Vol 57 (7) ◽  
pp. 1607-1611 ◽  
Author(s):  
Sun-Young An ◽  
Mika Asahara ◽  
Keiichi Goto ◽  
Hiroaki Kasai ◽  
Akira Yokota

Two Gram-positive, round-spore-forming, rod-shaped, halophilic bacterial strains, 5B73CT and 5B133E, were isolated from field soil in Kakegawa, Shizuoka, Japan, and were characterized taxonomically using a polyphasic approach. These two strains were found to comprise strictly aerobic, motile rods that formed subterminal endospores. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains 5B73CT and 5B133E are phylogenetically affiliated to the genus Virgibacillus, exhibiting sequence similarities of 94.1–96.4 % with respect to the type strains of Virgibacillus species. The DNA G+C contents of strains 5B73CT and 5B133E were 42.6 and 42.3 mol%, respectively. The cell-wall peptidoglycan type (meso-diaminopimelic acid), the major cellular fatty acids (anteiso-C15 : 0, iso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0) and the quinone type (MK-7) of the isolates support their affiliation to the genus Virgibacillus. On the basis of their genotypic and phenotypic characteristics, the isolates represent a novel species of the genus Virgibacillus, for which the name Virgibacillus halophilus sp. nov. is proposed. The type strain is 5B73CT (=IAM 15308T=KCTC 13935T).


2007 ◽  
Vol 57 (8) ◽  
pp. 1868-1871 ◽  
Author(s):  
Sun-Young An ◽  
Tomomi Haga ◽  
Hiroaki Kasai ◽  
Keiichi Goto ◽  
Akira Yokota

Two Gram-positive, endospore-forming, rod-shaped bacterial strains, HG645T and HG711, were respectively isolated from surface water of a brackish lake and sediment of a fishery harbour in Japan and were subsequently characterized taxonomically using a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains HG645T and HG711 are affiliated phylogenetically to the genus Sporosarcina, and they exhibit sequence similarities of 95.7–97.3 % to the type strains of Sporosarcina species. DNA–DNA relatedness between strain HG645T and the type strain of the phylogenetically related species Sporosarcina aquimarina was less than 10 %. The DNA G+C content of strains HG645T and HG711 were respectively 46.0 and 45.2 mol%. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The cell-wall peptidoglycan type (Lys–Glu), major cellular fatty acids (iso-C15 : 0 and anteiso-C15 : 0) and quinone type (MK-7) of the isolates support their affiliation to the genus Sporosarcina. On the basis of phylogenetic analysis and physiological and chemotaxonomic data, the isolates represent a novel species of the genus Sporosarcina, for which the name Sporosarcina saromensis sp. nov. is proposed. The type strain is strain HG645T (=MBIC08270T=IAM 15429T =KCTC 13119T).


2007 ◽  
Vol 57 (5) ◽  
pp. 947-950 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped, Flavobacterium-like bacterial strain, DS-20T, was isolated from soil from the island of Dokdo, Korea, and subjected to a polyphasic taxonomic study. Strain DS-20T grew optimally at pH 6.5–7.0 and 25 °C. It contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C17 : 0 3-OH and iso-C17 : 1 ω9c as the major fatty acids. The DNA G+C content was 38.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DS-20T belonged to the genus Flavobacterium. Levels of 16S rRNA gene sequence similarity between strain DS-20T and the type strains of recognized Flavobacterium species were below 94.9 %. Strain DS-20T differed from phylogenetically related Flavobacterium species in several phenotypic characteristics. On the basis of its phenotypic and phylogenetic distinctiveness, strain DS-20T was classified in the genus Flavobacterium as representing a novel species, for which the name Flavobacterium terrigena sp. nov. is proposed. The type strain is DS-20T (=KCTC 12761T=DSM 17934T).


2007 ◽  
Vol 57 (7) ◽  
pp. 1539-1542 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Byung-Yong Kim ◽  
Seung-Beom Hong ◽  
Jae-Ho Joa ◽  
Sang-Sik Nam ◽  
...  

A light-pink-coloured bacterium, designated strain 5416T-32T, was isolated from an air sample in Korea. Cells of the strain were strictly aerobic, Gram-negative, motile (single polar or subpolar flagellum) and rod-shaped. Optimal growth occurred at 25–30 °C and at pH 6.0–7.0. The major quinones were Q-10 and Q-8. The major fatty acids were C18 : 1 ω7c (53.8 %) and C16 : 0 (15.9 %). The G+C content of the genomic DNA was 65.0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 5416T-32T was most closely related to Skermanella parooensis, with a similarity of 96.2 %, but relatively low sequence similarities (<92 %) were found with respect to other species with validly published names held in GenBank. Phenotypic and genotypic analyses indicated that strain 5416T-32T could not be assigned to any recognized species. Therefore strain 5416T-32T represents a novel species of the genus Skermanella, for which the name Skermanella aerolata sp. nov. is proposed. The type strain is 5416T-32T (=KACC 11604T=DSM 18479T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2424-2429 ◽  
Author(s):  
Hang-Yeon Weon ◽  
Soon-Wo Kwon ◽  
Jung-A Son ◽  
Soo-Jin Kim ◽  
Yi-Seul Kim ◽  
...  

Three bacterial isolates from air samples in Korea, designated strains 6424S-25T, 6515J-31T and 6424S-61T, were characterized using a polyphasic approach. The cells were strictly aerobic, Gram-stain-negative, non-motile, non-spore-forming and rod-shaped. Phylogenetic analysis of their 16S rRNA gene sequences revealed a clear affiliation with the phylum Bacteroidetes. Strains 6424S-25T and 6515J-31T showed 16S rRNA gene sequence similarities of 92.7–94.8 % to type strains of recognized species of the genus Adhaeribacter and strain 6424S-61T was closely related to Segetibacter koreensis Gsoil 664T (93.9 % similarity). The G+C contents of the DNA of strains 6424S-25T, 6515J-31T and 6424S-61T were 44.5, 43.9 and 38.4 mol%, respectively. Major fatty acids of strains 6424S-25T and 6515J-31T were summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B), iso-C15 : 0 and C16 : 1 ω5c. The fatty acid content of strain 6424S-61T mainly comprised iso-C15 : 1 G and iso-C15 : 0. Comparative analysis of phenotypic and phylogenetic traits indicated that strains 6424S-25T and 6515J-31T represented two novel species of the genus Adhaeribacter and that strain 6424S-61T should be considered as a novel species of the genus Segetibacter. The names Adhaeribacter aerophilus sp. nov. (type strain 6424S-25T =KACC 14118T =NBRC 106134T), Adhaeribacter aerolatus sp. nov. (type strain 6515J-31T =KACC 14117T =NBRC 106133T) and Segetibacter aerophilus sp. nov. (type strain 6424S-61T =KACC 14119T =NBRC 106135T) are proposed for these organisms.


2007 ◽  
Vol 57 (6) ◽  
pp. 1327-1330 ◽  
Author(s):  
Shoichi Hosoya ◽  
Akira Yokota

Two strains of gliding, agarolytic bacteria, strains YS10T and YML5, were isolated from coastal seawater off Kamogawa, Japan. Phylogenetic analysis based on 16S rRNA gene sequences showed that the novel isolates represent a separate lineage within the genus Flammeovirga. DNA–DNA hybridization values between these isolates and the type strains of species of the genus Flammeovirga were significantly lower than those accepted as threshold values for the phylogenetic definition of a species. Furthermore, some of the phenotypic characteristics indicate that the isolates differ from other Flammeovirga species. Based on these differences, it is suggested that the isolates represent a novel species, for which the name Flammeovirga kamogawensis sp. nov. is proposed. The type strain is YS10T (=IAM 15451T=NCIMB 14281T).


2010 ◽  
Vol 60 (7) ◽  
pp. 1488-1492 ◽  
Author(s):  
Jung-Hye Choi ◽  
Min-Soo Kim ◽  
Seong Woon Roh ◽  
Jin-Woo Bae

A Gram-negative, aerobic, rod-shaped, motile Brevundimonas-like bacterial strain, J22T, was isolated from black sand collected from Soesoggak, Jeju Island, Korea. Growth of strain J22T was observed in R2A medium at temperatures between 10 and 42 °C (optimum 30 °C), between pH 6.5 and 10.5 (optimum pH 7.5) and at a NaCl concentration between 0 and 4 % (w/v) (optimum 0–1 %). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J22T belonged to the genus Brevundimonas, with high sequence similarities of >97 % to the sequence of the type strains Brevundimonas alba CB88T, Brevundimonas lenta DS-18T, Brevundimonas variabilis CB17T, Mycoplana bullata TK0051T, Brevundimonas kwangchunensis KSL-102T, Brevundimonas intermedia CB63T, Brevundimonas subvibrioides CB81T and Brevundimonas bacteroides CB7T. Strain J22T exhibited DNA–DNA relatedness values of less than 22.2 % with the phylogenetically related species of the genus Brevundimonas. The DNA G+C content of strain J22T was 66.3 mol%. The predominant cellular fatty acids were C18 : 1 ω7c, C16 : 0 and C16 : 1 ω9c; C12 : 0 3-OH was present, which chemotaxonomically characterizes the members of the genus Brevundimonas. Phylogenetic, genomic and biochemical characteristics served to differentiate this isolate from recognized members of the genus Brevundimonas. Strain J22T (=KCTC 22177T=JCM 15911T) should be classified as a novel species in the genus Brevundimonas, for which the name Brevundimonas basaltis sp. nov. is proposed.


2007 ◽  
Vol 57 (10) ◽  
pp. 2236-2240 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Jung-Sook Lee ◽  
Hyun Woo Oh ◽  
Tae-Kwang Oh

A Gram-negative, rod-shaped, Brevundimonas-like bacterial strain, DS-18T, was isolated from soil in Dokdo, Korea, and its exact taxonomic position was investigated by using a polyphasic approach. Strain DS-18T grew optimally at pH 6.5–7.0 and 25 °C without NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain DS-18T belonged to the genus Brevundimonas. Strain DS-18T contained Q-10 as the predominant ubiquinone and C18 : 1 ω7c and C16 : 0 as the major fatty acids. The DNA G+C content was 68.7 mol%. Strain DS-18T exhibited levels of 16S rRNA gene sequence similarity of 96.3–98.7 % to the type strains of Brevundimonas species and Mycoplana bullata. Mean DNA–DNA relatedness values between strain DS-18T and the type strains of phylogenetically related Brevundimonas species and M. bullata were in the range 15–32 %. Strain DS-18T differed from Brevundimonas species and M. bullata in several phenotypic characteristics. On the basis of phenotypic, phylogenetic and genetic data, strain DS-18T represents a novel species of the genus Brevundimonas, for which the name Brevundimonas lenta sp. nov. is proposed. The type strain is DS-18T (=KCTC 12871T =JCM 14602T).


2015 ◽  
Vol 65 (Pt_11) ◽  
pp. 3866-3871 ◽  
Author(s):  
Miyuki Nishijima ◽  
Kyoko Adachi ◽  
Hiroshi Sano ◽  
Kazuhide Yamasato

Phylogenetic and taxonomic characterization was performed for a bacterium, designated strain Q-192T, isolated from the surface of the green macroalga Halimeda sp., collected from the subtropical Ishigaki Island, Japan. The isolate was a polysaccharide-producing, Gram-stain-negative, aerobic, rod-shaped, motile bacterium with a polar flagellum. The isolate was slightly halophilic, required Na+, Mg2+ and Ca2+ ions for growth, but did not require growth factors. The only isoprenoid quinone was ubiquinone-8.The major cellular fatty acids were C18 : 1ω7c, C16 : 0 and C14 : 0. The main hydroxy fatty acid was C10 : 0 3-OH. The DNA G+C content was 45.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences placed the isolate in the class Gammaproteobacteria. The phylogenetically closest relatives with validly published names were Pseudomaricurvus alkylphenolicus KU41GT, Teredinibacter turnerae T7902T, Pseudoteredinibacter isoporae SW-11T and Simiduia agarivorans SA1T with sequence similarities of 94.5, 94.1, 93.7 and 93.6 %, respectively. The isolate was distinguished from members of these genera by a combination of DNA G+C content, chemotaxonomic characteristics (respiratory quinone system, fatty acid profile and polar lipid composition) and other phenotypic features. Based on phylogenetic, genotypic, chemotaxonomic and phenotypic characteristics, strain Q-192T is considered to represent a novel species of a new genus, for which the name Marinibactrum halimedae gen. nov., sp. nov. is proposed. The type strain of Marinibactrum halimedae is Q-192T ( = NBRC 110095T = NCIMB 14932T).


2006 ◽  
Vol 56 (6) ◽  
pp. 1251-1255 ◽  
Author(s):  
Jung-Hoon Yoon ◽  
So-Jung Kang ◽  
Tae-Kwang Oh

A Gram-negative, non-motile, non-spore-forming, slightly halophilic bacterial strain, DSW-5T, was isolated from seawater off Dokdo, Korea, and subjected to a polyphasic taxonomic study. It grew optimally at 25–28 °C and in the presence of 2 % (w/v) NaCl. Strain DSW-5T contained MK-6 as the predominant menaquinone and iso-C15 : 0, iso-C15 : 1 and iso-C15 : 0 3-OH as the major fatty acids. The major polar lipids detected were phosphatidylethanolamine, three unidentified phospholipids and an amino-group-containing lipid. The DNA G+C content was 30.0 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DSW-5T was most closely related to the genus Polaribacter. Similarity values between the 16S rRNA gene sequences of strain DSW-5T and the type strains of recognized Polaribacter species were in the range 96.2–96.8 %. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain DSW-5T (=KCTC 12392T=DSM 17204T) was classified in the genus Polaribacter as the type strain of a novel species, for which the name Polaribacter dokdonensis sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document