scholarly journals Glycomyces sambucus sp. nov., an endophytic actinomycete isolated from the stem of Sambucus adnata Wall

2007 ◽  
Vol 57 (9) ◽  
pp. 1995-1998 ◽  
Author(s):  
Qiang Gu ◽  
Wen Zheng ◽  
Ying Huang

An actinomycete, designated strain E71T, was isolated from the stem of Sambucus adnata Wall, a Chinese medicinal plant, and subjected to a polyphasic taxonomic study. Phylogenetic analyses based on the 16S rRNA gene sequence showed that the organism was a member of the genus Glycomyces, and formed a distinct phyletic line distantly related to recognized species of the genus Glycomyces. Morphological and chemotaxonomic data supported the affiliation of strain E71T to the genus Glycomyces. A number of physiological properties and a unique menaquinone profile allowed differentiation of the strain from related Glycomyces species. It is therefore proposed that strain E71T represents a novel species of the genus Glycomyces, for which the name Glycomyces sambucus sp. nov. is proposed. The type strain is E71T (=CGMCC 4.3147T=DSM 45047T).

2011 ◽  
Vol 61 (9) ◽  
pp. 2167-2172 ◽  
Author(s):  
Qi-Yong Tang ◽  
Na Yang ◽  
Jian Wang ◽  
Yu-Qing Xie ◽  
Biao Ren ◽  
...  

A Gram-stain-positive, endospore-forming, rod-shaped bacterium, designated XJ259T, was isolated from a cold spring sample from Xinjiang Uyghur Autonomous Region, China. The isolate grew optimally at 20–30 °C and pH 7.3–7.8. Comparative analysis of the 16S rRNA gene sequence showed that isolate XJ259T belonged phylogenetically to the genus Paenibacillus, and was most closely related to Paenibacillus xinjiangensis B538T (with 96.6 % sequence similarity), Paenibacillus glycanilyticus DS-1T (96.3 %) and Paenibacillus castaneae Ch-32T (96.1 %), sharing less than 96.0 % sequence similarity with all other members of the genus Paenibacillus. Chemotaxonomic analysis revealing menaquinone-7 (MK-7) as the major isoprenoid quinone, diphosphatidylglycerol, phosphatidylethanolamine and two unknown phosphoglycolipids as the major cellular polar lipids, a DNA G+C content of 47.0 mol%, and anteiso-C15 : 0 and C16 : 0 as the major fatty acids supported affiliation of the new isolate to the genus Paenibacillus. Based on these data, isolate XJ259T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus algorifonticola sp. nov. is proposed. The type strain is XJ259T ( = CGMCC 1.10223T  = JCM 16598T).


2011 ◽  
Vol 61 (7) ◽  
pp. 1715-1719 ◽  
Author(s):  
Sang-Hoon Baek ◽  
Yingshun Cui ◽  
Sun-Chang Kim ◽  
Chang-Hao Cui ◽  
Chengri Yin ◽  
...  

A Gram-reaction-positive, rod-shaped, spore-forming bacterium, designated Gsoil 1105T, was isolated from soil of a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the order Bacillales, showing the highest level of sequence similarity with respect to Tumebacillus permanentifrigoris Eur1 9.5T (94.6 %). The phylogenetic distances from other described species with validly published names within the order Bacillales were greater than 9.0 %. Strain Gsoil 1105T had a genomic DNA G+C content of 55.6 mol% and menaquinone 7 (MK-7) as the major respiratory quinone. The major fatty acids were iso-C15 : 0 and anteiso-C15 : 0. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1105T represents a novel species of the genus Tumebacillus, for which the name Tumebacillus ginsengisoli sp. nov. is proposed. The type strain is Gsoil 1105T ( = KCTC 13942T  = DSM 18389T).


2010 ◽  
Vol 60 (1) ◽  
pp. 140-143 ◽  
Author(s):  
Eun-Jin Park ◽  
Seong Woon Roh ◽  
Min-Soo Kim ◽  
Mi-Ja Jung ◽  
Kee-Sun Shin ◽  
...  

A Gram-positive, aerobic, non-motile and coccoid actinobacterium, designated P31T, was isolated from a traditional, fermented seafood. The strain was catalase-positive and oxidase-negative. Cells grew in the presence of 0–15.0 % (w/v) NaCl, and at pH 5–10 and 15–37 °C. Major cellular fatty acids were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. Strain P31T contained MK-7 as the predominant menaquinone. The DNA G+C content of the genomic DNA of strain P31T was 65.2 mol%. A phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain P31T was most closely related to Kocuria kristinae DSM 20032T, with 96.9 % similarity, and these two strains clustered together in constructed phylogenetic trees. The DNA–DNA hybridization value between strain P31T and K. kristinae DSM 20032T was 21.1 %. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, it is suggested that strain P31T represents a novel species of the genus Kocuria, for which the name Kocuria koreensis sp. nov. is proposed. The type strain is P31T (=KCTC 19595T=JCM 15915T).


2005 ◽  
Vol 55 (5) ◽  
pp. 2113-2117 ◽  
Author(s):  
P. Chaturvedi ◽  
G. S. N. Reddy ◽  
S. Shivaji

Strain HHS 11T was isolated from a water sample collected from the snout of Hamta glacier located in the Himalayan mountain ranges of India. Phenotypic, chemotaxonomic and phylogenetic analyses established the affiliation of the isolate to the genus Dyadobacter. HHS 11T possessed 96 and 95 % 16S rRNA gene sequence similarity with respect to Dyadobacter crusticola and Dyadobacter fermentans, respectively. Furthermore, strain HHS 11T differs from D. crusticola and D. fermentans in a number of phenotypic characteristics. These data suggest that strain HHS 11T represents a novel species of the genus Dyadobacter, for which the name Dyadobacter hamtensis sp. nov. is proposed. The type strain is HHS 11T (=JCM 12919T=MTCC 7023T).


2010 ◽  
Vol 60 (10) ◽  
pp. 2467-2472 ◽  
Author(s):  
Niels O. G. Jørgensen ◽  
Kristian K. Brandt ◽  
Ole Nybroe ◽  
Michael Hansen

A novel, non-pigmented, rod-shaped, Gram-negative strain was isolated from mesotrophic lake water in Zealand, Denmark. Phylogenetic analysis of the 16S rRNA gene sequence of the bacterium, designated strain 389T, indicated that the strain belonged to the genus Vogesella and formed a monophyletic group with Vogesella perlucida DS-28T (99.1 % nucleotide similarity); it was less related to Vogesella indigofera ATCC 19706T (96.9 % similarity) and Vogesella lacus LMG 24504T (96.8 % similarity). Hybridization of DNA from strain 389T and V. perlucida demonstrated a reassociation of 50.6±9.6 %. The DNA G+C content of strain 389T was 61.2 mol%. The fatty acid profile of the strain differed from those of the other strains representing the genus Vogesella by a high content of C16 : 1 ω7c and/or iso-C15 : 0 2-OH (71.6 %) and a lower content of C16 : 0. Strain 389T was capable of degrading peptidoglycan and had chitinase and lysozyme activities, possibly associated with the degradation of peptidoglycan, and had capacity for degradation of several other polymer compounds. Based on phenotypic and genotypic characteristics, strain 389T represents a novel species, for which we propose the name Vogesella mureinivorans sp. nov. The type strain is 389T (=DSM 21247T =LMG 25302T).


2004 ◽  
Vol 54 (1) ◽  
pp. 235-239 ◽  
Author(s):  
Joachim Wink ◽  
Julia Gandhi ◽  
Reiner M. Kroppenstedt ◽  
Gerhard Seibert ◽  
Bettina Sträubler ◽  
...  

Strain DSM 44594T, which produces the glycopeptide antibiotic decaplanin, is a member of the genus Amycolatopsis based on 16S rRNA gene sequence analysis and chemotaxonomic properties. It is the first member of this genus that is reported to form pseudosporangia, which resemble those of members of the genus Kibdelosporangium. Phylogenetically, the novel taxon is related to Amycolatopsis orientalis, Amycolatopsis lurida, Amycolatopsis azurea, Amycolatopsis japonica and Amycolatopsis keratiniphila. Morphological, cultural and physiological properties, the production of a unique glycolipid and DNA–DNA similarity of <55 % with phylogenetically related strains reveal that strain DSM 44594T represents a novel species of the genus, for which the name Amycolatopsis decaplanina sp. nov. (type strain, FH 1845T=DSM 44594T=NRRL B-24209T) is proposed.


2007 ◽  
Vol 57 (12) ◽  
pp. 2758-2761 ◽  
Author(s):  
D. P. Labeda ◽  
R. M. Kroppenstedt

In the course of phylogenetic analyses of the taxa within the suborder Pseudonocardineae, it was observed that Saccharothrix tangerinus MK27-91F2T was misplaced in the genus Saccharothrix. After a detailed examination of nucleotide signatures in the 16S rRNA gene sequence along with the morphological and chemotaxonomic characteristics of this strain, which are different from those of all species of Saccharothrix as well as the other genera within the suborder, it was concluded that this strain represents a new genus, for which the name Umezawaea gen. nov. is proposed. Pseudosporangia are produced on the aerial mycelium, the whole-cell sugar pattern consists of galactose, mannose and ribose, phosphatidylethanolamine, phosphatidylinositol and lyso-phosphatidylethanolamine are the predominant phospholipids and MK-9(H4) is the predominant menaquinone. The type species of the proposed new genus is Umezawaea tangerina gen. nov., comb. nov., with the type strain MK27-91F2T (=NRRL B-24463T =DSM 44720T =FERM P-16053T =JCM 10302T =NBRC 16184T).


2015 ◽  
Vol 65 (Pt_9) ◽  
pp. 3196-3202 ◽  
Author(s):  
Van-An Hoang ◽  
Yeon-Ju Kim ◽  
Ngoc Lan Nguyen ◽  
Chang Ho Kang ◽  
Jong-Pyo Kang ◽  
...  

A novel Gram-staining-positive, rod-shaped bacterium, designated DCY100T, was isolated from rhizome of mountain ginseng root in Hwacheon mountain, Gangwon province, Republic of Korea. The 16S rRNA gene sequence analysis showed that strain DCY100T belonged to the genus Microbacterium and was most closely related to Microbacterium ginsengisoli KCTC 19189T (97.9 %), Microbacterium lacus JCM 15575T (97.2 %) and Microbacterium invictum DSM 19600T (97.1 %). The major menaquinones were MK-11 and MK-12. The major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol and one unidentified glycolipid. The major fatty acids (>10.0 %) were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The cell-wall peptidoglycan contained the amino acids ornithine, alanine, glutamic acid and glycine; whole-cell sugars consisted of glucose, galactose, rhamnose and ribose. The DNA G+C content was 63.6 ± 0.7 mol%. The DNA–DNA hybridization relatedness values between strain DCY100T and Microbacterium ginsengisoli KCTC 19189T, Microbacterium lacus JCM 15575T and Microbacterium invictum DSM 19600T were 36.2 ± 0.4, 22.0 ± 3.0 and 15.3 ± 1.8 %, respectively. On the basis of phenotypic, chemotaxonomic and genotypic analyses, the isolate is classified as a representative of a novel species in the genus Microbacterium, for which the name Microbacterium rhizomatis DCY100T is proposed. The type strain is DCY100T ( = KCTC 39529T = JCM 30598T).


2005 ◽  
Vol 55 (1) ◽  
pp. 133-138 ◽  
Author(s):  
Kwang Kyu Kim ◽  
Hee-Sung Bae ◽  
Peter Schumann ◽  
Sung-Taik Lee

A novel nitrate-reducing bacterium, CPW406T, was isolated from the sediment of a shallow, freshwater lake. The strain was a Gram-negative, non-motile, non-spore-forming rod, which formed yellow-pigmented colonies on nutrient agar and contained a polyamine pattern with sym-homospermidine as the major compound, MK-6 as the predominant menaquinone, 15 : 0 iso and 17 : 0 iso 3-OH as the major fatty acids and phosphatidylethanolamine and several unknown lipids in the polar lipid profile. The 16S rRNA gene sequence of strain CPW406T was found to be most similar to that of the type strain of Chryseobacterium defluvii (DSM 14219T; 97·9 % similarity). However, DNA–DNA relatedness data and its phenotypic properties showed that strain CPW406T could be distinguished from all known Chryseobacterium species and thus represented a novel species, for which the name Chryseobacterium daecheongense sp. nov. is proposed; the type strain is CPW406T (=DSM 15235T=KCTC 12088T).


2012 ◽  
Vol 62 (2) ◽  
pp. 330-334 ◽  
Author(s):  
Sylvie Cousin ◽  
Marie-Laure Gulat-Okalla ◽  
Laurence Motreff ◽  
Catherine Gouyette ◽  
Christiane Bouchier ◽  
...  

In the early 1980s, a facultatively anaerobic, non-motile, short rod, designated 202T, was isolated from a chicken crop and identified as a homofermentative lactic acid bacterium. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain was affiliated with the genus Lactobacillus, clustering within the Lactobacillus acidophilus–delbrueckii group. In this analysis, strain 202T appeared to be most closely related to the type strains of Lactobacillus intestinalis and Lactobacillus amylolyticus, with gene sequence similarities of 96.1 and 96.2 %, respectively. Strain 202T was found to differ from these two species, however, when investigated by multilocus sequence analysis, and it also differed in terms of some of its metabolic properties. On the basis of these observations, strain 202T is considered to represent a novel species in the genus Lactobacillus, for which the name Lactobacillus gigeriorum sp. nov. is proposed; the type strain is 202T ( = CRBIP 24.85T = DSM 23908T).


Sign in / Sign up

Export Citation Format

Share Document