scholarly journals Streptomyces montanus sp. nov., a novel actinomycete isolated from soil

2020 ◽  
Vol 70 (5) ◽  
pp. 3226-3233 ◽  
Author(s):  
Hao Jiang ◽  
Liyuan Han ◽  
Jingjing Li ◽  
Mingying Yu ◽  
Junwei Zhao ◽  
...  

A novel actinomycete, designated strain NEAU-C151T, was isolated from soil collected from Mount Song and characterized using a polyphasic approach. Analysis of the 16S rRNA gene sequence indicated that strain NEAU-C151T belongs to the genus Streptomyces and exhibited 97.5, 97.4 and 97.4 % similarities to Streptomyces lincolnensis NRRL 2936T, Streptomyces coacervatus AS-0823T, and Streptomyces longisporus ISP 5166T, respectively. The assignment of strain NEAU-C151T to the genus Streptomyces was confirmed by chemotaxonomic data: anteiso-C15 : 0, C16 : 0, iso-C16 : 0, C16 : 1 (ω7c) and anteiso-C17 : 0 as the major cellular fatty acids; whole-cell sugars contained ribose and glucose; phospholipid profile consisted of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), unidentified phospholipid (PL), unidentified lipids (L) and phosphatidylinositol mannoside (PIM); the menaquinones were MK-9(H4), MK-9(H6), MK-10(H2) and MK-9(H8). However, multilocus sequence analysis based on five other house-keeping genes (atpD, gyrB, recA, rpoB, and trpB), DNA–DNA relatedness and phenotypic data showed that strain NEAU-C151T could be distinguished from its closest relatives. Consequently, strain NEAU-C151T represents a novel species of the genus Streptomyces , for which the name Streptomyces montanus sp. nov. is proposed. The type strain is NEAU-C151T (=CGMCC 4.7498T=DSM 107808T).

Author(s):  
Sang-Ah Lee ◽  
Ve Van Le ◽  
So-Ra Ko ◽  
Nakyeong Lee ◽  
Hee-Mock Oh ◽  
...  

A Gram-stain-negative, non-motile, rod-shaped, aerobic bacterial strain, designated HC2T, was isolated from the phycosphere of Haematococcus lacustris NIES 144 culture. Strain HC2T was able to grow at pH 4.5–8.0, at 4–32 °C and in the presence of 0–2 % (w/v) NaCl. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain HC2T was affiliated to the genus Mucilaginibacter and shared the highest sequence similarity with Mucilaginibacter lappiensis ANJKI2T (98.20 %) and Mucilaginibacter sabulilitoris SMS-12T (98.06 %). Strain HC2T contained summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C15 : 0 as the major fatty acids (>10.0 %). The major polar lipids were phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, two unidentified aminolipids and four unidentified lipids. The respiratory quinone was menaquinone 7 (MK-7). The genomic DNA G+C content was 42.0 %. On the basis of the phenotypic, chemotaxonomic and phylogenetic characteristics, strain HC2T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter inviolabilis sp. nov. is proposed. The type strain is HC2T (=KCTC 82084T=JCM 34116T).


2013 ◽  
Vol 63 (Pt_8) ◽  
pp. 2945-2950 ◽  
Author(s):  
Xuefang Zhang ◽  
Jianli Zhang ◽  
Jimei Zheng ◽  
Di Xin ◽  
Yuhua Xin ◽  
...  

A novel actinomycete, strain FX61T, was isolated from a saline sample collected from the Inner Mongolian Autonomous Region in China and subjected to a taxonomic study using a polyphasic approach. The predominant menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The major fatty acids were iso-C16 : 0, anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 1 H, C16 : 0, iso-C14 : 0 and anteiso-C17 : 0. The phospholipid profile contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, two phosphatidylinositol mannosides and an unidentified phospholipid. The G+C content of the genomic DNA was 72 mol%. The 16S rRNA gene sequence of the isolate had greater than 98 % similarity with those of Streptomyces griseoincarnatus ATCC 23623T (98.2 %), Streptomyces labedae DSM 41446T (98.2 %), Streptomyces variabilis ATCC 19815T (98.2 %), Streptomyces erythrogriseus ATCC 27427T (98.2 %), Streptomyces matensis ATCC 23935T (98.2 %), Streptomyces althioticus ATCC 19724T (98.2 %) and Streptomyces luteosporeus ATCC 33049T (98.0 %), showing that the novel strain should be assigned to the genus Streptomyces . DNA–DNA hybridizations with the seven above-mentioned members of the genus Streptomyces showed 29.8, 28.5, 27.0, 25.5, 25.0, 23.5 and 22.0 % relatedness, respectively. On the basis of the phenotypic characteristics and genotypic distinctiveness, strain FX61T should be classified as a novel species of the genus Streptomyces , for which the name Streptomyces wuyuanensis sp. nov. is proposed. The type strain is FX61T ( = CGMCC 4.7042T = KCTC 29112T).


Author(s):  
Yuxin Chen ◽  
Arisa Nishihara ◽  
Takao Iino ◽  
Moriya Ohkuma ◽  
Shin Haruta

A novel nitrogen-fixing fermentative bacterium, designated as YA01T, was isolated from Nakabusa hot springs in Japan. The short-rod cells of strain YA01T were Gram-positive and non-sporulating. Phylogenetic trees of the 16S rRNA gene sequence and concatenated sequences of 40 single-copy ribosomal genes revealed that strain YA01T belonged to the genus Caldicellulosiruptor and was closely related to Caldicellulosiruptor hydrothermalis 108T, Caldicellulosiruptor bescii DSM 6725T and Caldicellulosiruptor kronotskyensis 2002T. The 16S rRNA gene sequence of strain YA01T shares less than 98.1 % identity to the known Caldicellulosiruptor species. The G+C content of the genomic DNA was 34.8 mol%. Strain YA01T shares low genome-wide average nucleotide identity (90.31–91.10 %), average amino acid identity (91.45–92.10 %) and <70 % digital DNA–DNA hybridization value (41.8–44.2 %) with the three related species of the genus Caldicellulosiruptor . Strain YA01T grew at 50–78 °C (optimum, 70 °C) and at pH 5.0–9.5 (optimum, pH 6.5). Strain YA01T mainly produced acetate by consuming d(+)-glucose as a carbon source. The main cellular fatty acids were iso-C17 : 0 (35.7 %), C16 : 0 (33.3 %), DMA16 : 0 (6.6 %) and iso-C15 : 0 (5.9 %). Based on its distinct phylogenetic position, biochemical and physiological characteristics, and the major cellular fatty acids, strain YA01T is considered to represent a novel species of the genus Caldicellulosiruptor for which the name Caldicellulosiruptor diazotrophicus sp. nov. is proposed (type strain YA01T=DSM 112098T=JCM 34253T).


2012 ◽  
Vol 62 (Pt_10) ◽  
pp. 2322-2329 ◽  
Author(s):  
Ismet Ara ◽  
Baljinova Tsetseg ◽  
Damdinsuren Daram ◽  
Manabu Suto ◽  
Katsuhiko Ando

A Gram-reaction-positive aerobic actinomycete, designated strain MN08-A0118T, which produced short chains of non-motile spores on the tips of long sporophores and formed yellow–brown colonies with branched substrate mycelium, was studied in detail to determine its taxonomic position. On the basis of 16S rRNA gene sequence analyses, strain MN08-A0118T was grouped into the genus Herbidospora , being most closely related to Streptosporangium claviforme (98.2 %), Herbidospora osyris (98.2 %), Herbidospora daliensis (98.2 %), Herbidospora cretacea (97.9 %) and Herbidospora yilanensis (97.4 %). Chemotaxonomic data supported allocation of the strain to the genus Herbidospora . MK-10(H4) was the predominant menaquinone with minor amounts of MK-10(H6), MK-10(H2) and MK-9(H4); the fatty acid profile contained major amounts of iso-C16 : 0, C17 : 0 10-methyl, iso-C14 : 0 and iso-C16 : 0 2-OH; the phospholipid profile contained phosphatidylethanolamine, phosphatidylmethylethanolamine and glucosamine-containing phospholipids; and the whole-cell sugars included ribose, glucose, galactose, madurose and rhamnose (trace). The phylogenetic data, phenotypic and genotypic properties and DNA–DNA hybridization differentiated this strain from its closely related strains, S. claviforme (35–54 % DNA–DNA relatedness), H. osyris (39–51 %), H. daliensis (3–16 %), H. cretacea (34–39 %) and H. yilanensis (34–42 %). Thus, MN08-A0118T represents a novel species of the genus Herbidospora , for which the name Herbidospora mongoliensis sp. nov. is proposed, with MN08-A0118T ( = NBRC 105882T  = VTCC D9-22T) as the type strain. In addition, DNA–DNA hybridization results showed that S. claviforme and H. osyris are synonyms of H. cretacea .


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 1083-1085 ◽  
Author(s):  
Sunhee Hong ◽  
Christine E. Farrance ◽  
Anne Russell ◽  
Hana Yi

Two species of the genus Deinococcus , namely Deinococcus wulumuqiensis Wang et al. 2010 and Deinococcus xibeiensis Wang et al. 2010, were simultaneously proposed and described in the same publication. However, the identical 16S rRNA gene sequence of the two type strains strongly raised the probability of their relatedness at the species level. Thus, the genomic relatedness of the two species of the genus Deinococcus was investigated here to clarify their taxonomic status. The high (99.9 %) average nucleotide identity (ANI) between the genome sequences of the two type strains suggested that the two species are synonymous. Additional phenotypic data including enzymic activities and substrate-utilization profiles showed no pronounced differences between the type strains of the two species. Data from this study demonstrated that the two taxa constitute a single species. According to Rule 42 of the Bacteriological Code, we propose that D. xibeiensis Wang et al. 2010 should be reclassified as a subjective heterotypic synonym of D. wulumuqiensis Wang et al. 2010.


2013 ◽  
Vol 63 (Pt_7) ◽  
pp. 2553-2558 ◽  
Author(s):  
Veeraya Weerawongwiwat ◽  
Hyeonji Kang ◽  
Min Young Jung ◽  
Wonyong Kim

A Gram-stain-negative, non-spore-forming, strictly aerobic, orange-pigmented bacterial strain, motile by gliding, designated CAU 1044T, was isolated from a green seaweed and its taxonomic position was investigated using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CAU 1044T formed a distinct lineage within the genus Maribacter and was most closely related to Maribacter antarcticus JCM 15445T and Maribacter arcticus KOPRI 20941T (96.3 and 95.7 % similarity, respectively). Strain CAU 1044T contained menaquinone 6 as the only isoprenoid quinone and iso-C15 : 0, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c and/or iso-C15 : 0 2-OH), iso-C17 : 0 3-OH and iso-C15 : 1 G as the major fatty acids. The cell wall peptidoglycan of strain CAU 1044T contained meso-diaminopimelic acid and the major whole-cell sugars were glucose and ribose. The polar lipids were composed of phosphatidylethanolamine, one unidentified phospholipid, six unidentified aminolipids and four unidentified lipids. The DNA G+C content was 40.2 mol%. On the basis of phenotypic data and phylogenetic inference, strain CAU 1044T should be classified as a representative of a novel species in the genus Maribacter for which the name Maribacter chungangensis sp. nov. is proposed. The type strain is CAU 1044T ( = KCTC 23735T  = CCUG 61948T). Emended descriptions of the genus Maribacter and the species M. arcticus KCTC 22053T are also proposed.


2014 ◽  
Vol 64 (Pt_4) ◽  
pp. 1373-1377 ◽  
Author(s):  
Xiao-Xia Zhang ◽  
Xue Tang ◽  
Rizwan Ali Sheirdil ◽  
Lei Sun ◽  
Xiao-Tong Ma

Two strains (J3-AN59T and J3-N84) of Gram-stain-negative, aerobic and rod-shaped bacteria were isolated from the roots of fresh rice plants. The 16S rRNA gene sequence similarity results showed that the similarity between strains J3-AN59T and J3-N84 was 100 %. Both strains were phylogenetically related to members of the genus Rhizobium , and they were most closely related to Rhizobium tarimense ACCC 06128T (97.43 %). Similarities in the sequences of housekeeping genes between strains J3-AN59T and J3-N84 and those of recognized species of the genus Rhizobium were less than 90 %. The polar lipid profiles of both strains were predominantly composed of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and an unknown aminophospholipid. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0. The DNA G+C contents of J3-AN59T and J3-N84 were 55.7 and 57.1 mol%, respectively. The DNA–DNA relatedness value between J3-AN59T and J3-N84 was 89 %, and strain J3-AN59T showed 9 % DNA–DNA relatedness to R. tarimense ACCC 06128T, the most closely related strain. Based on this evidence, we found that J3-AN59T and J3-N84 represent a novel species in the genus Rhizobium and we propose the name Rhizobium rhizoryzae sp. nov. The type strain is J3-AN59T ( = ACCC 05916T = KCTC 23652T).


2013 ◽  
Vol 63 (Pt_1) ◽  
pp. 208-211 ◽  
Author(s):  
Lourdes Martínez-Aguilar ◽  
Jesús Caballero-Mellado ◽  
Paulina Estrada-de los Santos

Phylogenetic analysis of the 16S rRNA gene sequences of strains TE26T and K6 belonging to Wautersia numazuensis Kageyama et al. 2005 showed the strains to be deeply intermingled among the species of the genus Cupriavidus . The comparison showed that strain TE26T was closely related to the type strains of Cupriavidus pinatubonensis (99.1 % 16S rRNA gene sequence similarity), C. basilensis (98.7 %), C. necator (98.7 %) and C. gilardii (98.0 %). However, DNA–DNA hybridization experiments (less than 20 % relatedness) demonstrated that strain TE26T is different from these Cupriavidus species. A comparative phenotypic and chemotaxonomic analysis (based on fatty acid profiles) in combination with the 16S rRNA gene sequence phylogenetic analysis and the DNA–DNA hybridization results supported the incorporation of Wautersia numazuensis into the genus Cupriavidus as Cupriavidus numazuensis comb. nov.; the type strain is TE26T ( = LMG 26411T  = DSM 15562T  = CIP 108892T).


2012 ◽  
Vol 62 (Pt_5) ◽  
pp. 1121-1127 ◽  
Author(s):  
An Coorevits ◽  
Anna E. Dinsdale ◽  
Jeroen Heyrman ◽  
Peter Schumann ◽  
Anita Van Landschoot ◽  
...  

‘Bacillus macroides’ ATCC 12905T ( = DSM 54T = LMG 18474T), isolated in 1947 from cow dung, was not included in the Approved Lists of Bacterial Names and so it lost standing in bacteriological nomenclature. Reinvestigation of the strain, including DNA–DNA relatedness experiments, revealed that ‘Bacillus macroides’ is genomically distinct from its closest relatives Lysinibacillus xylanilyticus , Lysinibacillus boronitolerans and Lysinibacillus fusiformis (as determined by 16S rRNA gene sequence analysis, with pairwise similarity values of 99.2, 98.8 and 98.5 %, respectively, with the type strains of these species). Further analysis showed that ‘Bacillus macroides’ shares the A4α l-Lys–d-Asp peptidoglycan type with other members of the genus Lysinibacillus and can thus be attributed to this genus. These results, combined with additional phenotypic data, justify the description of strain LMG 18474T ( = DSM 54T = ATCC 12905T) as Lysinibacillus macroides sp. nov., nom. rev.


2014 ◽  
Vol 64 (Pt_8) ◽  
pp. 2517-2521 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Kyung-Sook Whang

The taxonomic position of strain JL-22T, isolated from litter of a bamboo (Sasa borealis) forest, was determined using a polyphasic approach. The organism had phenotypic and morphological properties consistent with it being a member of the genus Streptomyces . Phylogenetic analysis of the 16S rRNA gene sequence showed that strain JL-22T was closely related to Streptomyces prunicolor NRRL B-12281T (99.2 %), Streptomyces galilaeus JCM 4757T (99.0 %) and Streptomyces chartreusis NBRC 12753T (99.0 %). However, the results of DNA–DNA hybridization and physiological and biochemical tests showed that strain JL-22T could be differentiated from its closest phylogenetic relatives both genotypically and phenotypically. Based on phenotypic and genotypic data, strain JL-22T represents a novel species of the genus Streptomyces , for which the name Streptomyces graminifolii sp. nov. is proposed. The type strain is JL-22T ( = KACC 17180T = NBRC 109806T).


Sign in / Sign up

Export Citation Format

Share Document