scholarly journals Gluconobacter aidae sp. nov., an acetic acid bacteria isolated from tropical fruits in Thailand

2020 ◽  
Vol 70 (7) ◽  
pp. 4351-4357 ◽  
Author(s):  
Pattaraporn Yukphan ◽  
Piyanat Charoenyingcharoen ◽  
Sukunphat Malimas ◽  
Yuki Muramatsu ◽  
Yasuyoshi Nakagawa ◽  
...  

Two bacterial strains, isolates AC10T and AC20, which were reported in a previous study on the diversity of acetic acid bacteria in Thailand, were subjected to a taxonomic study. The phylogenetic analysis based on the 16S rRNA gene sequences showed that the two isolates were located closely to the type strains of Gluconobacter oxydans and Gluconobacter roseus . However, the two isolates formed a separate cluster from the type strains of the two species. The genomic DNA of isolate AC10T was sequenced. The assembled genomes of the isolate were analysed for average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH). The results showed that the highest ANI and dDDH values between isolate AC10T and G. oxydans DSM 3503T were 91.15 and 68.2 %, which are lower than the suggested values for species delineation. The genome-based tree was reconstructed and the phylogenetic lineage based on genome sequences showed that the lineage of isolate AC10T was distinct from G. oxydans DSM 3503T and its related species. The two isolates were distinguished from G. oxydans and their relatives by their phenotypic characteristics and MALDI-TOF profiles. Therefore, the two isolates, AC10T (=BCC 15749T=TBRC 11329T=NBRC 103576T) and AC20 (=BCC 15759=TBRC 11330=NBRC 103579), can be assigned to an independent species within the genus Gluconobacter , and the name Gluconobacter aidae sp. nov. is proposed for the two isolates.

Author(s):  
Hideomi Itoh ◽  
Zhenxing Xu ◽  
Yoko Masuda ◽  
Natsumi Ushijima ◽  
Chie Hayakawa ◽  
...  

Three bacterial strains, designated Red330T, Red736T and Red745T, were isolated from forest and paddy soils in Japan. Strains Red330T, Red736T and Red745T are flagella-harbouring and strictly anaerobic bacteria forming red colonies. A 16S rRNA gene sequence-based phylogenetic tree showed that all three strains were located in a cluster, including the type strains of Geomonas species, which were recently separated from the genus Geobacter within the family Geobacteraceae . Similarities of the 16S rRNA gene sequences among the three strains and Geomonas oryzae S43T, the type species of the genus Geomonas , were 96.3–98.5 %. The genome-related indexes, average nucleotide identity, digital DNA–DNA hybridization, and average amino acid identity, among the three strains and G. oryza e S43T were 74.7–86.8 %, 21.2–33.3 % and 70.4–89.8 %, respectively, which were lower than the species delineation thresholds. Regarding the phylogenetic relationships based on genome sequences, the three strains clustered with the type strains of Geomonas species, which were independent from the type strains of Geobacter species. The distinguishableness of the three isolated strains was supported by physiological and chemotaxonomic properties, with the profile of availability of electron donors and cellular fatty acids composition being particularly different among them. Based on genetic, phylogenetic and phenotypic properties, the three isolates represent three novel independent species in the genus Geomonas , for which the names Geomonas silvestris sp. nov., Geomonas paludis sp. nov. and Geomonas limicola sp. nov. are proposed. The type strains are Red330T (=NBRC 114028T=MCCC 1K03949T), Red736T (=NBRC 114029T=MCCC 1K03950T) and Red745T (=NBRC 114030T=MCCC 1K03951T), respectively.


2012 ◽  
Vol 62 (Pt_11) ◽  
pp. 2589-2592 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Song-Ih Han ◽  
Kyung-Sook Whang

A novel actinobacterium, designated strain BR-34T, was isolated from rhizosphere soil of bamboo (Phyllostachys nigro var. henonis) sampled in Damyang, Korea. The strain was found to have morphological and chemotaxonomic characteristics typical of the genus Catenulispora . The strain contained iso-C16 : 0 as the major fatty acid and MK-9(H4), MK-9(H6) and MK-9(H8) as major isoprenoid quinones. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain BR-34T formed a cluster separate from members of the genus Catenulispora and was related most closely to Catenulispora acidiphila ID139908T (97.4 % similarity), Catenulispora rubra Aac-30T (97.3 %), Catenulispora yoronensis TT N02-20T (97.3 %) and Catenulispora subtropica TT 99-48T (97 %). However, the level of DNA–DNA relatedness between strain BR-34T and C. acidiphila ID139908T was only 45.32 %. Based on DNA–DNA relatedness, morphological and phenotypic data, strain BR-34T could be distinguished from the type strains of phylogenetically related species. It is therefore considered to represent a novel species of the genus Catenulispora , for which the name Catenulispora graminis sp. nov. is proposed. The type strain is BR-34T ( = KACC 15070T = NBRC 107755T).


2013 ◽  
Vol 63 (Pt_9) ◽  
pp. 3280-3286 ◽  
Author(s):  
Iris Kuo ◽  
Jimmy Saw ◽  
Durrell D. Kapan ◽  
Stephanie Christensen ◽  
Kenneth Y. Kaneshiro ◽  
...  

Strain IK-1T was isolated from decaying tissues of the shrub Wikstroemia oahuensis collected on O‘ahu, Hawai‘i. Cells were rods that stained Gram-negative. Gliding motility was not observed. The strain was oxidase-negative and catalase-positive. Zeaxanthin was the major carotenoid. Flexirubin-type pigments were not detected. The most abundant fatty acids in whole cells of IK-1T grown on R2A were iso-C15 : 0 and one or both of C16 : 1ω7c and C16 : 1ω6c. Based on comparisons of the nucleotide sequence of the 16S rRNA gene, the closest neighbouring type strains were Flavobacterium rivuli WB 3.3-2T and Flavobacterium subsaxonicum WB 4.1-42T, with which IK-1T shares 93.84 and 93.67 % identity, respectively. The G+C content of the genomic DNA was 44.2 mol%. On the basis of distance from its nearest phylogenetic neighbours and phenotypic differences, the species Flavobacterium akiainvivens sp. nov. is proposed to accommodate strain IK-1T ( = ATCC BAA-2412T = CIP 110358T) as the type strain. The description of the genus Flavobacterium is emended to reflect the DNA G+C contents of Flavobacterium akiainvivens IK-1T and other species of the genus Flavobacterium described since the original description of the genus.


2015 ◽  
Vol 65 (Pt_1) ◽  
pp. 189-194 ◽  
Author(s):  
Antje Rusch ◽  
Shaer Islam ◽  
Pratixa Savalia ◽  
Jan P. Amend

Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-AprilT. Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-AprilT grew at temperatures between 4 °C and 40 °C (optimum 30–37 °C), at pH 3.5 to 8.3 (optimum pH 5–6) and in the presence of up to 2.7 % NaCl (optimum 0–1.0 %). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-AprilT was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-AprilT belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8 %), Burkholderia phytofirmans (98.8 %), Burkholderia caledonica (98.4 %) and Burkholderia sediminicola (98.4 %). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA–DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia , for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-AprilT ( = DSM 28142T = LMG 28183T).


Author(s):  
Nantawan Niemhom ◽  
Chanwit Suriyachadkun ◽  
Chokchai Kittiwongwattana

Two Gram-stain-negative, non-motile, rod-shaped bacterial strains were isolated from the surfaces of rice roots. They were designated as strains 1303T and 1310. Their colonies were circular, entire, opaque, convex and yellow. They were chitinase- and catalase-positive, reduced nitrate and grew at 16–37 °C (optimum, 30 °C), pH 5.0–10.0 (optimum, pH 7.0) and 0–2.0% NaCl (optimum, 1.0 %). Based on the 16S rRNA gene sequence analysis, they were classified as members of the genus Chitinophaga . Results of phylogenetic and phylogenomic analyses indicated that they formed a cluster with Chitinophaga eiseniae YC6729T, Chitinophaga qingshengii JN246T, Chitinophaga varians 10-7 W-9003T and Chitinophaga fulva G-6-1-13T. When the genomic sequences of strains 1303T and 1310 were compared with their close relatives, the average nucleotide identity and digital DNA–DNA hybridization values were below the cut-off levels. Phosphatidylethanolamine was the major polar lipid. MK-7 was the major respiratory quinone. iso-C15 : 0, C16 : 1  ω5c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c) were the predominant fatty acids. Differential characteristics between both strains and their close relatives were also observed. Based on the distinctions in genotypic, phenotypic and chemotypic features, strains 1303T and 1310 represent members of a novel species of the genus Chitinophaga , for which the name Chitinophaga oryzae sp. nov. is proposed. The type strain is 1303T (=KACC 22075T=TBRC 12926T).


Author(s):  
Jun-Jie Ying ◽  
Zhi-Cheng Wu ◽  
Yuan-Chun Fang ◽  
Lin Xu ◽  
Cong Sun

Parvularcula flava was proposed as a novel member of genus Parvularcula in 2016. Some time earlier, Aquisalinus flavus has been proposed as a novel species of a novel genus named Aquisalinus . When comparing the 16S rRNA gene sequences of type strains P. flava NH6-79T and A. flavus D11M-2T, they showed 97.9 % sequence identity, much higher than the sequence identities 92.7–94.3 % between P. flava NH6-79T and type strains in the genus Parvularcula , indicating that the later proposed novel taxon Parvularcula flava need reclassification. The phylogenetic trees based on 16S rRNA gene sequences and genome sequences both showed that P. flava NH6-79T and A. flavus D11M-2T formed a separated branch away from strains in the genera Parvularcula , Marinicaulis and Amphiplicatus . The average amino acid identity and average nucleotide identity values of P. flava NH6-79T and A. flavus D11M-2T were 87.9 and 85.0 %, respectively, much higher than the values between P. flava NH6-79T and other closely related type strains (54.3 %–58.1 % and 68.6–70.4 %, respectively). P. flava NH6-79T and A. flavus D11M-2T also contained summed feature 8 (C18 : 1  ω6c and/or C18 : 1  ω7c) and C16 : 0 as major fatty acids, distinguishing them from other closely related taxa. Based on the results of the phylogenetic, comparative genomic and phenotypic analyses, Parvularcula flava should be reclassified as Aquisalinus luteolus nom. nov. and the description of genus Aquisalinus is emended.


Author(s):  
Junjie Zhang ◽  
Shanshan Peng ◽  
Mitchell Andrews ◽  
Chunzeng Liu ◽  
Yimin Shang ◽  
...  

Three fast-growing rhizobial strains isolated from effective nodules of common vetch (Vicia sativa L.) were characterized using a polyphasic approach. All three strains were assigned to the genus Rhizobium on the basis of the results of 16S rRNA gene sequence analysis. Phylogenetic analysis based on concatenated atpD-recA genes separated the strains into a distinct lineage represented by WYCCWR 11279T, which showed average nucleotide identity values of 95.40 and 93.61 % with the most similar phylogenetic type strains of Rhizobium sophorae CCBAU 03386T and Rhizobium laguerreae FB TT, respectively. The digital DNA–DNA hybridization relatedness values between WYCCWR 11279T and the closest related type strains were less than 70 %. Therefore, a novel rhizobial species is proposed, Rhizobium changzhiense sp. nov., and strain WYCCWR 11279T (=HAMBI 3709T=LMG 31534T) is designated as the type strain for the novel species.


Author(s):  
Caixin Yang ◽  
Yibo Bai ◽  
Kui Dong ◽  
Jing Yang ◽  
Xin-He Lai ◽  
...  

Four Gram-stain-positive, catalase-negative, non-spore-forming, rod-shaped bacterial strains (zg-325T, zg329, dk561T and dk752) were isolated from the respiratory tract of marmot (Marmota himalayana) and the faeces of Tibetan gazelle (Procapra picticaudata) from the Qinghai-Tibet Plateau of PR China. The results of 16S rRNA gene sequence-based phylogenetic analyses indicated that strains zg-325T and dk561T represent members of the genus Actinomyces , most similar to Actinomyces denticolens DSM 20671T and Actinomyces ruminicola B71T, respectively. The DNA G+C contents of strains zg-325T and dk561T were 71.6 and 69.3 mol%, respectively. The digital DNA–DNA hybridization values of strains zg-325T and dk561T with their most closely related species were below the 70 % threshold for species demarcation. The four strains grew best at 35 °C in air containing 5 % CO2 on brain heart infusion (BHI) agar with 5 % sheep blood. All four strains had C18:1ω9c and C16:0 as the major cellular fatty acids. MK-8 and MK-9 were the major menaquinones in zg-325T while MK-10 was predominant in dk561T. The major polar lipids included diphosphatidylglycerol and phosphatidylinositol. On the basis of several lines of evidence from phenotypic and phylogenetic analyses, zg-325T and dk561T represent novel species of the genus Actinomyces , for which the name Actinomyces marmotae sp. nov. and Actinomyces procaprae sp. nov. are proposed. The type strains are zg-325T (=GDMCC 1.1724T=JCM 34091T) and dk561T (=CGMCC 4.7566T=JCM 33484T). We also propose, on the basis of the phylogenetic results herein, the reclassification of Actinomyces liubingyangii and Actinomyces tangfeifanii as Boudabousia liubingyangii comb. nov. and Boudabousia tangfeifanii comb. nov., respectively.


Author(s):  
Xiunuan Chen ◽  
Bingxia Dong ◽  
Ting Chen ◽  
Na Ren ◽  
Jing Wang ◽  
...  

Aniline blue-decolourizing bacterial strain 502str22T, isolated from sediment collected in the East Pacific, was subjected to characterization by a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain 502str22T belongs to the genus Novosphingobium , with closely related type strains ‘ Novosphingobium profundi ’ F72T (97.6%), N. mathurense SM117T (97.1%) and N. arvoryzae Jyi-02T (97.0%). Digital DNA–DNA hybridization and average nucleotide identity values between strain 502str22T and closely related type strains were 20.3–24.8% and 74.1–81.9%, respectively. The major cellular fatty acid (>10%) was C18:1 ω7c. The polar lipid profile consisted of a mixture of phosphatidylcholine, one sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylmonomethylethanolamine. The DNA G+C content of strain 502str22T was 65.5 mol%. The polyphasic taxonomic results indicated that strain 502str22T represents a novel species of the genus Novosphingobium , for which the name Novosphingobium decolorationis sp. nov is proposed. The type strain is 502str22T (=KCTC 82134T= MCCC 1K04799 T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


Sign in / Sign up

Export Citation Format

Share Document