scholarly journals Ruminococcus bovis sp. nov., a novel species of amylolytic Ruminococcus isolated from the rumen of a dairy cow

Author(s):  
James Gaffney ◽  
Jordan Embree ◽  
Sean Gilmore ◽  
Mallory Embree

This study describes JE7A12T (=ATCC TSD-225T=NCTC 14479T), an isolate from the ruminal content of a dairy cow. Phenotypic and genotypic traits of the isolate were explored. JE7A12T was found to be a strictly anaerobic, catalase-negative, oxidase-negative, coccoid bacterium that grows in chains. The API 50 CH carbon source assay detected fermentation of d-glucose, d-fructose, d-galactose, glycogen and starch. HPLC showed acetate to be the major fermentation product as a result of carbohydrate fermentation. Phylogenetic analysis of JE7A12T based on 16S rRNA nucleotide sequence and amino acid sequences from the whole genome indicated a divergent lineage from the closest neighbours in the genus Ruminococcus . The results of 16S rRNA sequence comparison, whole genome average nucleotide identity (ANI) and DNA G+C content data indicate that JE7A12T represents a novel species which we propose the name Ruminococcus bovis with JE7A12T as the type strain.

2020 ◽  
Vol 9 (15) ◽  
Author(s):  
Hoo-Dhon Byun ◽  
Chang-Gu Hyun

Lentibacillus sp. strain JNUCC-1 was isolated from Korean traditionally fermented anchovy sauce. The 16S rRNA sequence of JNUCC-1 showed 95.2% and 95.1% similarity to Lentibacillus populi WD4L-1T and Virgibacillus siamensis MS3-4T, respectively, indicating that it is a novel species. The whole-genome sequence, which contains 3,687,469 bp and 3,833 genes in 3 contigs, is reported.


Author(s):  
Dong-Wook Hyun ◽  
June-Young Lee ◽  
Hojun Sung ◽  
Pil Soo Kim ◽  
Yun-Seok Jeong ◽  
...  

A polyphasic taxonomic approach was used to characterize two novel bacterial strains, designated as HDW11T and HDW19T, isolated from intestine samples of the dark diving beetle Hydrophilus acuminatus and the diving beetle Cybister lewisianus, respectively. Both isolates were Gram-stain-positive, facultatively anaerobic and non-motile. Strain HDW11T grew optimally at 30 °C, pH 8 and in the presence of 1% (w/v) NaCl. Strain HDW19T grew optimally at 25 °C, pH 7 and in the presence of 0.3% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences and genome sequences revealed that strain HDW11T is a member of the genus Brevilactibacter and is closely related to Brevilactibacter flavus VG341T [with 97.9% 16S rRNA sequence identity and 79.1% average nucleotide identity (ANI)], and that strain HDW19T belongs to the genus Weissella and is closely related to W. koreensis KCTC 3621T (with 98.9% 16S rRNA sequence identity and 79.5% ANI). The major cellular fatty acids of strains HDW11T and HDW19T were C18:1 ω9c and anteiso-C15:0, respectively. The sole respiratory quinone of strain HDW11T was MK-9 (H4). The major polar lipid components of strain HDW11T were diphosphatidylglycerol and phosphatidylglycerol, and the major polar lipid component of strain HDW19T was diphosphatidylglycerol. The genomic DNA G+C content of strains HDW11T and HDW19T were 72.1 and 37.2 mol%, respectively. The results of phylogenetic, phenotypic, chemotaxonomic and genotypic analyses suggest that strain HDW11T represents a novel species within the genus Brevilactibacter , and that strain HDW19T represents a novel species within the genus Weissella . We propose the name Brevilactibacter coleopterorum sp. nov. for strain HDW11T (=KACC 21335T=KCTC 49320T=JCM 33680T) and the name Weissella coleopterorum for strain HDW19T (=KACC 21347T=KCTC 43114T=JCM 33684T).


Author(s):  
Hyung Min Kim ◽  
Dong Min Han ◽  
Byung Hee Chun ◽  
Hye Su Jung ◽  
Kyung Hyun Kim ◽  
...  

A Gram-stain-negative, strictly aerobic, catalase-negative, oxidase-positive and non-motile rod-shaped bacterium, designated strain CrO1T, was isolated from a freshwater alga Cryptomonas obovoidea in the Nakdong river of South Korea. Colonies of CrO1T were white, convex and circular and growth was observed at 25–40 °C (optimum, 37 °C) and pH 6.0–9.0 (optimum, pH 7) and in the presence of 0–0.5 % (w/v) NaCl (optimum, 0 %). CrO1T contained C16 : 0, summed feature 5 (comprising C18 : 0ante and/or C18 : 2ω6,9c), C18 : 0, summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c) and summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c) as the major cellular fatty acids (>5 %) and ubiquinone-8 as the sole respiratory quinone. Phosphatidylethanolamine was detected as the major polar lipid. The DNA G+C content of CrO1T, calculated from the whole genome sequence was 69.6 mol%. CrO1T was most closely related to Ramlibacter humi 18x22-1T with a 97.6 % 16S rRNA sequence similarity and shared less than 97.4 % 16S rRNA sequence similarities with other type strains. Phylogenetic analyses based on the 16S rRNA gene and whole genome sequences revealed that CrO1T formed a distinct phyletic lineage within the genus Ramlibacter . On the basis of the results of phenotypic, chemotaxonomic and molecular analysis, CrO1T clearly represents a novel species of the genus Ramlibacter , for which the name Ramlibacter algicola sp. nov. is proposed. The type strain is CrO1T (=KACC 19926T=JCM 33302T).


2016 ◽  
Vol 83 (3) ◽  
Author(s):  
Jean F. Challacombe ◽  
Jeannine M. Petersen ◽  
La Verne Gallegos-Graves ◽  
David Hodge ◽  
Segaran Pillai ◽  
...  

ABSTRACT Francisella tularensis is a highly virulent zoonotic pathogen that causes tularemia and, because of weaponization efforts in past world wars, is considered a tier 1 biothreat agent. Detection and surveillance of F. tularensis may be confounded by the presence of uncharacterized, closely related organisms. Through DNA-based diagnostics and environmental surveys, novel clinical and environmental Francisella isolates have been obtained in recent years. Here we present 7 new Francisella genomes and a comparison of their characteristics to each other and to 24 publicly available genomes as well as a comparative analysis of 16S rRNA and sdhA genes from over 90 Francisella strains. Delineation of new species in bacteria is challenging, especially when isolates having very close genomic characteristics exhibit different physiological features—for example, when some are virulent pathogens in humans and animals while others are nonpathogenic or are opportunistic pathogens. Species resolution within Francisella varies with analyses of single genes, multiple gene or protein sets, or whole-genome comparisons of nucleic acid and amino acid sequences. Analyses focusing on single genes (16S rRNA, sdhA), multiple gene sets (virulence genes, lipopolysaccharide [LPS] biosynthesis genes, pathogenicity island), and whole-genome comparisons (nucleotide and protein) gave congruent results, but with different levels of discrimination confidence. We designate four new species within the genus; Francisella opportunistica sp. nov. (MA06-7296), Francisella salina sp. nov. (TX07-7308), Francisella uliginis sp. nov. (TX07-7310), and Francisella frigiditurris sp. nov. (CA97-1460). This study provides a robust comparative framework to discern species and virulence features of newly detected Francisella bacteria. IMPORTANCE DNA-based detection and sequencing methods have identified thousands of new bacteria in the human body and the environment. In most cases, there are no cultured isolates that correspond to these sequences. While DNA-based approaches are highly sensitive, accurately assigning species is difficult without known near relatives for comparison. This ambiguity poses challenges for clinical cases, disease epidemics, and environmental surveillance, for which response times must be short. Many new Francisella isolates have been identified globally. However, their species designations and potential for causing human disease remain ambiguous. Through detailed genome comparisons, we identified features that differentiate F. tularensis from clinical and environmental Francisella isolates and provide a knowledge base for future comparison of Francisella organisms identified in clinical samples or environmental surveys.


2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 1089-1095 ◽  
Author(s):  
Markus Haber ◽  
Sigal Shefer ◽  
Assunta Giordano ◽  
Pierangelo Orlando ◽  
Agata Gambacorta ◽  
...  

Two bacterial strains, VI.14 and VIII.04T, were isolated from the Mediterranean sponge Axinella verrucosa collected off the Israeli coast near Sdot Yam. The non-motile, aerobic, Gram-negative isolates were oxidase-negative and catalase-positive, and formed golden-brown colonies on marine agar 2216. The pigment was neither diffusible nor flexirubin-like. Strain VIII.04T grew at 15–37 °C, at pH 6.0–9.0, in the presence of 20–50 g NaCl l−1 and 20–80 g sea salts l−1, The spectrum was narrower for strain VI.14, with growth at pH 7.0–8.0. and in the presence of 30–50 g NaCl l−1 and 30–70 g sea salts l−1. The predominant fatty acid (>50 %) in both strains was iso-C15 : 0, and the major respiratory quinone was MK-6. The DNA G+C content was 30.7 and 31.1 mol% for VIII.04T and VI.14, respectively. Results from 16S rRNA sequence similarity and phylogenetic analyses indicated that both strains are closely related to members of the family Flavobacteriaceae within the phylum Bacteroidetes , with as much as 91.7 % 16S rRNA sequence similarity. On the basis of data from the polyphasic analysis, we suggest that the strains represent a novel species in a new genus within the family Flavobacteriaceae , for which the name Aureivirga marina gen. nov., sp. nov. is proposed. Strain VIII.04T ( = ATCC BAA-2394T = LMG 26721T) is the type strain of Aureivirga marina.


2017 ◽  
Vol 5 (21) ◽  
Author(s):  
Jana K. Schniete ◽  
Talal S. Salih ◽  
Lis Algora-Gallardo ◽  
Tiago Santos ◽  
Sara Filgueira-Martinez ◽  
...  

ABSTRACT The draft genome for the type strain Streptomyces phaeoluteigriseus DSM41896 (ISP 5182) is reported. It was classified as a member of the Streptomyces violaceusniger clade; however, a polyphasic study showed it was a separate species based on its distinct spore morphology and 16S rRNA sequence. The genome sequence confirms it as a separate species.


2020 ◽  
Vol 70 (11) ◽  
pp. 5634-5639 ◽  
Author(s):  
Hyung Min Kim ◽  
Shehzad Abid Khan ◽  
Dong Min Han ◽  
Byung Hee Chun ◽  
Che Ok Jeon

A Gram-stain-negative, strictly aerobic bacterium, designated strain PeD5T, was isolated from a green alga Pediastrum duplex from the Nakdong river of the Republic of Korea. Cells were non-motile cocci, catalase-negative and oxidase-positive. Growth of PeD5T was observed at 25–40 °C (optimum, 35 °C) and pH 5.0–10.0 (optimum, pH 7–8), and in the presence of 0–0.25% (w/v) NaCl (optimum, 0%). PeD5T contained C16:0, C18:1ω7c 11-methyl, summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c) and summed feature 8 (comprising C18:1ω7c and/or C18:1ω6c) as major cellular fatty acids (>5%) and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified phospholipid and an unidentified aminolipid were detected as major polar lipids. The genomic DNA G+C content of PeD5T was 71.0 mol%. PeD5T was most closely related to Roseomonas stagni HS-69T with a 97.6% 16S rRNA sequence similarity and shared less than 96.3% 16S rRNA sequence similarities with type strains of other species. Phylogenetic analysis based on 16S rRNA gene sequences indicated that PeD5T formed a phyletic lineage with Roseomonas stagni HS-69T within the genus Roseomonas . On the basis of results of phenotypic, chemotaxonomic and molecular analysis, strain PeD5T clearly represents a novel species of the genus Roseomonas , for which the name Roseomonas algicola sp. nov. is proposed. The type strain is PeD5T (=KACC 19925T=JCM 33309T).


2011 ◽  
Vol 55 (11) ◽  
pp. 4979-4984 ◽  
Author(s):  
George A. Jacoby ◽  
Caitlin M. Griffin ◽  
David C. Hooper

ABSTRACTqnrBis the most common of the fiveqnrfamilies and has the greatest number of allelic variants. Almost two-thirds of theqnrBalleles have been reported inCitrobacterspp., and several were shown to be located on the chromosome. In this study, PCR was used to investigate the prevalence of plasmid-mediated quinolone resistance genes in 71 clinical isolates belonging to theCitrobacter freundiicomplex. Thirty-seven percent containedqnrBalleles, including 7 (qnrB32 to qnrB38) that were novel and 1 pseudogene, while none containedqnrA,qnrC,qnrD,qnrS, oraac(6′)-Ib-cr. When the strains were arrayed by related 16S rRNA sequence and further separated into subspecies by biochemical criteria, clustering ofqnrB-positive strains was evident. In only two strains withqnrB2andqnrB4was quinolone resistance transferable by conjugation, and only these strains contained the ISCR1sequence that is often associated withqnrBon plasmids. Five of 26qnrB-positive strains contained integrase genes, but these included the strains withqnrB2andqnrB4as well as two strains with other transmissible plasmids. In a fully sequenced genome ofCitrobacter youngae, a member of theC. freundiicomplex, another novelqnrBallele,qnrB39, occurs in a sequence of genes that is 90% identical to sequence surrounding integron-associatedqnrB4incorporated into plasmids. The chromosome ofCitrobacteris the likely source of plasmid-mediatedqnrB.


2020 ◽  
Vol 70 (7) ◽  
pp. 4250-4260 ◽  
Author(s):  
Sanjit Chandra Debnath ◽  
Can Chen ◽  
Ishrat Khan ◽  
Wen-Jie Wang ◽  
Dao-Qiong Zheng ◽  
...  

Two yellow-pigmented, Gram-stain-negative, aerobic, rod-shaped bacteria were isolated from the water of the hypersaline Chaka Salt Lake (strain SaA2.12T) and sediment of Qinghai Lake (strain LaA7.5T), PR China. According to the 16S rRNA phylogeny, the isolates belong to the genus Flavobacterium , showing the highest 16S rRNA sequence similarities to Flavobacterium arcticum SM1502T(97.6–97.7 %) and Flavobacterium suzhouense XIN-1T(96.5–96.6 %). Moreover, strains SaA2.12T and LaA7.5T showed 99.73 % 16S rRNA sequence similarity to each other. Major fatty acids, respiratory quinones and polar lipids detected in these isolates were iso-C15 : 0, menaquinone-6 and phosphatidylethanolamine, respectively. Strains SaA2.12T and LaA7.5T showed significant unique characteristics between them as well as between the closest phylogenetic members. The highest digital DNA–DNA hybridization (dDDH) and average nucleotide identity (ANI) values between SaA2.12T and its closest neighbours were 25.3 and 82.8 %, respectively; whereas these values (highest) between LaA7.5T and its closest members were 25.2 and 82.8 %, respectively. The dDDH and ANI values between strains SaA2.12T and LaA7.5T were calculated as 75.9 and 97.2 %, respectively. Therefore, based on polyphasic data, we propose that strain SaA2.12T represents a novel species with the name Flavobacterium salilacus sp. nov., with the type strain SaA2.12T (=KCTC 72220T=MCCC 1K03618T) and strain LaA7.5T as a subspecies within novel Flavobacterium salilacus with the name Flavobacterium salilacus subsp. altitudinum subsp. nov., with the type strain LaA7.5T (=KCTC 72806T=MCCC 1K04372T). These propositions automatically create Flavobacterium salilacus subsp. salilacus subsp. nov. with SaA2.12T (=KCTC 72220T=MCCC 1K03618T) as the type strain.


2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Luis Johnson Kangale ◽  
Anthony Levasseur ◽  
Didier Raoult ◽  
Eric Ghigo ◽  
Pierre-Edouard Fournier

ABSTRACT Comamonas aquatilis was defined as a new Comamonas species based on its 16S rRNA sequence, but the genome from the type strain SB30-Cr27-3T (= CIP 111491T = CCM 8815T) is not available. We have cultivated from the planarian Schmidtea mediterranea a Comamonas aquatilis strain, LK (= CSUR P6418 = CECT 9772), that exhibits 100% 16S rRNA sequence similarity to strain SB30-Cr27-3T. We have sequenced the genome of strain LK and obtained a chromosome of 4,899,818 bp, with a G+C content of 61.75%, assembled into two contigs.


Sign in / Sign up

Export Citation Format

Share Document