Steroidobacter gossypii sp. nov., isolated from cotton field soil

Author(s):  
Rui-Rui Huang ◽  
Xian-Feng Ge ◽  
Xin-Kai Chen ◽  
Shen-Rong Yang ◽  
Cheng Zhen ◽  
...  

A Gram-negative bacterium, designated S1-65T, was isolated from soil samples collected from a cotton field located in the Xinjiang region of PR China. Results of 16S rRNA gene sequence analysis revealed that strain S1-65T was affiliated to the genus Steroidobacter with its closest phylogenetic relatives being ‘Steroidobacter cummioxidans’ 35Y (98.4 %), ‘ Steroidobacter agaridevorans ’ SA29-B (98.3 %) and Steroidobacter agariperforans KA5-BT (98.3 %). 16S rRNA-directed phylogenetic analysis showed that strain S1-65T formed a unique phylogenetic subclade next to ‘ S. agaridevorans ’ SA29-B and S. agariperforans KA5-BT, suggesting that strain S1-65T should be identified as a member of the genus Steroidobacter . Further, substantial differences between the genotypic properties of strain S1-65T and the members of the genus Steroidobacter , including average nucleotide identity and digital DNA–DNA hybridization, resolved the taxonomic position of strain S1-65T and suggested its positioning as representing a novel species of the genus Steroidobacter . The DNA G+C content of strain S1-65T was 62.5 mol%, based on its draft genome sequence. The predominant respiratory quinone was ubiquinone-8. The main fatty acids were identified as summed feature 3 (C16:1ω6c/C16:1ω7c), C16 : 0 and iso-C15 : 0. In addition, its polar lipid profile was composed of aminophospholipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Here, we propose a novel species of the genus Steroidobacter : Steroidobacter gossypii sp. nov. with the type strain S1-65T (=JCM 34287T=CGMCC 1.18736T).

2020 ◽  
Vol 70 (5) ◽  
pp. 3323-3327 ◽  
Author(s):  
Qian Wang ◽  
Sheng-Dong Cai ◽  
Jie Liu ◽  
De-Chao Zhang

The Gram-strain-negative, rod-shaped, facultatively anaerobic, non-motile bacterial strain, designated S1-10T, was isolated from marine sediment. Strain S1-10T grew at 4–42 °C (optimally at 30–35 °C), at pH 7.0–10 (optimally at pH 9) and in the presence of 0.5–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-10T was related to the genus Aequorivita and had highest 16S rRNA gene sequence similarity to Aequorivita viscosa 8-1bT (97.7%). The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G+C content of strain S1-10T was 34.6 mol%. The polar lipid profile of strain S1-10T contained phosphatidylethanolamine, two aminolipids, two glycolipids, one phosphoglycolipid and three unidentified polar lipids. In addition, the maximum values of in silico DNA–DNA hybridization (isDDH) and average nucleotide identity (ANI) between strain S1-10T and A. viscosa CGMCC 1.11023T were 15.4 and 75.7 %, respectively. Combined data from phenotypic, phylogenetic, isDDH and ANI analyses demonstrated that strain S1-10T is the representative of a novel species of the genus Aequorivita , for which we propose the name Aequorivita sinensis sp. nov. (type strain S1-10T=CGMCC 1.12579T=JCM 19789T). We also propose that Vitellibacter todarodis and Vitellibacter aquimaris should be transferred into genus Aequorivita and be named Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov., respectively. The type strain of Aequorivita todarodis comb. nov. is MYP2-2T (= KCTC 62141T= NBRC 113025T) and the type strain of Aequorivita aquimaris comb. nov. is D-24T (=KCTC 42708T=DSM 101732T).


Author(s):  
Julian Rojas ◽  
Binoy Ambika Manirajan ◽  
Stefan Ratering ◽  
Christian Suarez ◽  
Rita Geissler-Plaum ◽  
...  

A Gram-stain-negative bacterium, designated I-24T, was isolated from soil of a natural salt meadow. Strain I-24T was aerobic, non-motile, rod-shaped, catalase-positive, oxidase-positive and grew optimally at pH 7 and 25 °C. Comparative 16S rRNA gene analysis indicated that strain I-24T has closest similarities to Spirosoma agri KCTC 52727T (95.9 %) and Spirosoma terrae KCTC 52035T (95.5 %). Strain I-24T contained summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c) and C16 : 1  ω5c as the major fatty acids, the predominant respiratory quinone was menaquinone MK-7, and the major polar lipids were phosphatidylethanolamine as well as an unidentified phosphoaminolipid. The draft genome of strain I-24T consists of 10 326 072 base pairs with 9153 predicted coding sequences and a G+C content of 47.7 mol%. Clear distinctions between strain I-24T and S. agri KCTC 52727T or S. terrae KCTC 52035T were shown in the pairwise average nucleotide identity results with values of 76.71 and 74.01 %, respectively. Moreover, the digital DNA–DNA relatedness values to these strains were 20.8 and 19.0 %. Based on its phenotypic, genotypic and chemotaxonomic characteristics, strain I-24T represents a novel species of the genus Spirosoma , for which the name Spirosoma endbachense sp. nov. is proposed. The type strain is I-24T (DSM 111055T=KCTC 72613T).


2020 ◽  
Vol 70 (4) ◽  
pp. 2261-2268 ◽  
Author(s):  
Mengyao Sheng ◽  
Zhou Yang ◽  
Xiaojun Yang ◽  
Jianyi Xu ◽  
Jiguo Qiu ◽  
...  

A Gram-stain-negative, aerobic, non-flagellated and filamentous-shaped bacterium, HX-16-21T, was isolated from activated sludge. Strain HX-16-21T was able to degrade gentisate, protocatechuic acid and p-hydroxybenzoic acid and herbicides quizalofop-p-ethyl and diclofop-methyl. The strain shared 97.2 % 16S rRNA gene sequence similarity to Niastella vici CCTCC AB 2015052T and less than 97 % similarities to other type strains. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain HX-16-21T belonged to the genus Niastella and formed a subclade with N. vici CCTCC AB 2015052T. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine and six unidentified lipids. The major fatty acids were iso-C15:0, iso-C15:1 G and iso-C17:0 3-OH. The predominant respiratory quinone was menaquinone 7 (MK-7). The draft genome of strain HX-16-21T was 8.1 Mb, and the G+C content was 43.5 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain HX-16-21T and N. vici CCTCC AB 2015052T were 80.6 and 26.8 %, respectively. Based on both phenotypic and phylogenetic evidence, strain HX-16-21T is considered to represent a novel species in the genus Niastella , for which the name Niastella caeni sp. nov. is proposed. The type strain is HX-16-21T (=KCTC 72288T=ACCC 61580T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1743-1746 ◽  
Author(s):  
Yu-Qin Zhang ◽  
Jae-Chan Lee ◽  
Dong-Jin Park ◽  
Xin-Xin Lu ◽  
Xiao-Zhen Mou ◽  
...  

A pink, Gram-stain-negative, motile, halotolerant bacterium with subpolar flagellum, designated strain BH87090T, was isolated from a saline soil sample collected from the south-west coastal area of South Korea (125° 58′ 58.08″ E 34° 45′ 37.32″ N). The isolate formed opaque pink to red colonies on marine agar plates at 30 °C. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, sulfoquinovosyl diacylglycerol, phosphatidylcholine and one unidentified phospholipid. The sole respiratory quinone was ubiquinone-10 (Q-10). The major cellular fatty acids were C18 : 1ω7c, C19 : 0 cyclo ω8c, C16 : 0 and 11-methyl C18 : 1ω7c. The genomic DNA G+C content was 61.8 mol%. These chemotaxonomic characteristics were all consistent with specific properties of the genus Roseivivax . Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate affiliated to the cluster with members of the genus Roseivivax in the Roseobacter clade, which suggested that the strain belonged to the genus Roseivivax . However, the low 16S rRNA gene similarities (93.5–95.3 %) of strain BH87090T with all the members of the genus Roseivivax indicated that it represented a novel species of the genus Roseivivax . On the basis of phenotypic and genotypic data, strain BH87090T should be classified as a novel species of the genus Roseivivax . The name Roseivivax roseus sp. nov. is proposed, with strain BH87090T ( = DSM 23042T = KCTC 22650T) as the type strain.


2014 ◽  
Vol 64 (Pt_10) ◽  
pp. 3341-3345 ◽  
Author(s):  
Jia-Fa Wu ◽  
Jie Li ◽  
Zhi-Qing You ◽  
Si Zhang

A novel Gram-stain-positive actinobacterium, designated strain SCSIO 11529T, was isolated from tissues of the stony coral Galaxea fascicularis, and characterized by using a polyphasic approach. The temperature range for growth was 22–50 °C (optimum 28–45 °C), the pH range for growth was 6.0–8.0 (optimum pH 7.0), and the NaCl concentration range for growth was 0–7 % (w/v) NaCl. The polar lipid profile contained diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol, phosphatidylmethylethanolamine, phosphatidylethanolamine and an unknown polar lipid. The predominant menaquinone was MK-9(H4). The major fatty acids (>10 %) were iso-C16 : 0, iso-C17 : 1ω6c, iso-C16 : 1 H and C16 : 1ω7c/iso-C15 : 0 2-OH. The DNA G+C content of strain SCSIO 11529T was 70.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SCSIO 11529T belongs to the genus Prauserella , with the closest neighbours being Prauserella marina MS498T (97.0 % 16S rRNA gene sequence similarity), Prauserella rugosa DSM 43194T (96.4 %) and Prauserella flava YIM 90630T (95.9 %). Based on the evidence of the present study, strain SCSIO 11529T is considered to represent a novel species of the genus Prauserella , for which the name Prauserella coralliicola sp. nov. is proposed. The type strain is SCSIO 11529T ( = DSM 45821T = NBRC 109418T).


Author(s):  
Jingling Liang ◽  
Sai Wang ◽  
Ayizekeranmu Yiming ◽  
Luoyi Fu ◽  
Iftikhar Ahmad ◽  
...  

Strain L22-9T, a Gram-stain-negative and rod-shaped bacterium, motile by one polar flagellum, was isolated from cornfield soil in Bijie, Guizhou Province, PR China. Based on 16S rRNA gene sequences, it was identified as a Pseudomonas species. Multilocus sequence analysis of concatenated 16S rRNA, gyrB, rpoB and rpoD gene sequences showed that strain L22-9T formed a clearly separated branch, located in a cluster together with Pseudomonas brassicacearum LMG 21623T, Pseudomonas kilonensis DSM 13647T and Pseudomonas thivervalensis DSM 13194T. Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH) confirmed that strain L22-9T should be classified as a novel species. It was most closely related to P. kilonensis DSM 13647T with ANI and dDDH values of 91.87 and 46.3 %, respectively. Phenotypic features that can distinguish strain L22-9T from P. kilonensis DSM 13647T are the assimilation ability of N-acetyl-d-glucosamine, poor activity of arginine dihydrolase and failure to ferment ribose and d-fucose. The predominant cellular fatty acids of strain L22-9T are C16 : 0, summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The respiratory quinones consist of Q-9 and Q-8. The polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phosphoglycolipids, two unidentified aminophospholipids and an unidentified glycolipid. Based on the evidence, we conclude that strain L22-9T represents a novel species, for which the name Pseudomonas bijieensis sp. nov. is proposed. The type strain is L22-9T (=CGMCC 1.18528T=LMG 31948T), with a DNA G+C content of 60.85 mol%.


Author(s):  
Hye Su Jung ◽  
Byung Hee Chun ◽  
Hyung Min Kim ◽  
Che Ok Jeon

Two Gram-stain-negative, yellow-pigmented and strictly aerobic bacteria, designated strains SE-s27T and SE-s28T, were isolated from forest soil. Both strains were non-motile rods that were catalase-positive and oxidase-negative and grew optimally at 25–30 °C, pH 8.0 and with 0 % (w/v) NaCl. Strain SE-s28T produced flexirubin-type pigments, but strain SE-s27T did not produce them. Both strains contained menaquinone-6 as the sole respiratory quinone and phosphatidylethanolamine as a major polar lipid. As the major cellular fatty acids (>10 %), SE-s27T contained iso-C15 : 1 and iso-C15 : 1G, whereas SE-s28T contained iso-C15 : 0 and summed feature 3 comprising C16 : 1ω7c and/or C16 : 1ω6c and/or iso-C15 : 0 2-OH. The DNA G+C contents of strains SE-s27T and SE-s28T were 33.1 and 44.3 mol%, respectively. The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that SE-s27T and SE-s28T formed respective distinct phylogenetic lineages within the genus Flavobacterium . Strains SE-s27T and SE-s28T were most closely related to Flavobacterium macrobrachii an-8T and Flavobacterium piscinae ICH-30T with 98.0 and 94.5 % 16S rRNA gene sequence similarities, respectively. In conclusion, strains SE-s27T and SE-s28T represent novel species of the genus Flavobacterium , for which the names Flavobacterium solisilvae sp. nov. and Flavobacterium silvaticum sp. nov. are proposed. The type strains of F. solisilvae and F. silvaticum are SE-s27T (=KACC 18802T=JCM 31544T) and SE-s28T (=KACC 18803T=JCM 31545T), respectively.


2015 ◽  
Vol 65 (Pt_3) ◽  
pp. 754-759 ◽  
Author(s):  
Paulina Corral ◽  
Angela Corcelli ◽  
Antonio Ventosa

An extremely haloalkaphilic archaeon, strain T26T, belonging to the genus Halostagnicola , was isolated from sediment of the soda lake Bange in the region of Tibet, China. Phylogenetic analysis based on 16S rRNA gene sequence similarities showed that strain T26T was closely related to Halostagnicola alkaliphila 167-74T (98.4 %), Halostagnicola larsenii XH-48T (97.5 %) and Halostagnicola kamekurae 194-10T (96.8 %). Strain T26T grew optimally in media containing 25 % (w/v) salts, at pH 9.0 and 37 °C in aerobic conditions. Mg2+ was not required for growth. The cells were motile, pleomorphic and Gram-stain-variable. Colonies of this strain were pink pigmented. Hypotonic treatment caused cell lysis. The polar lipids of the isolate consisted of C20C20 and C20C25 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and minor phospholipids components. Glycolipids were not detected, in contrast to the two neutrophilic species of this genus. The genomic DNA G+C content of strain T26T was 60.1 mol% and DNA–DNA hybridization showed a relatedness of 19 and 17 % with Halostagnicola alkaliphila CECT 7631T and Halostagnicola larsenii CECT 7116T, respectively. The comparison of 16S rRNA gene sequences, detailed phenotypic characterization, polar lipid profile and DNA–DNA hybridization studies revealed that strain T26T belongs to the genus Halostagnicola , and represents a novel species for which the name Halostagnicola bangensis sp. nov. is proposed. The type strain is T26T ( = CECT 8219T = IBRC-M 10759T = JCM 18750T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1370-1375 ◽  
Author(s):  
Isabel Snauwaert ◽  
Bart Hoste ◽  
Katrien De Bruyne ◽  
Karolien Peeters ◽  
Luc De Vuyst ◽  
...  

Two lactic acid-producing, Gram-stain-positive rods were isolated from a microbial mat actively growing in the littoral zone of an Antarctic lake (Forlidas Pond) in the Pensacola mountains and studied using a polyphasic taxonomic approach. The isolates were examined by phylogenetic analysis of the 16S rRNA gene, multilocus sequence analysis of pheS, rpoA and atpA, and biochemical and genotypic characteristics. One strain, designated LMG 26641, belonged to Carnobacterium alterfunditum and the other strain, designated LMG 26642T, could be assigned to a novel species, with Carnobacterium funditum DSM 5970T as its closest phylogenetic neighbour (99.2 % 16S rRNA gene sequence similarity). Carnobacterium iners sp. nov. could be distinguished biochemically from other members of the genus Carnobacterium by the lack of acid production from carbohydrates. DNA–DNA relatedness confirmed that strain LMG 26642T represented a novel species, for which we propose the name Carnobacterium iners sp. nov. (type strain is LMG 26642T  = CCUG 62000T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5943-5949 ◽  
Author(s):  
Yun-zhen Yang ◽  
Ji-feng Chen ◽  
Wan-ru Huang ◽  
Ran-ran Zhang ◽  
Shuangjiang Liu ◽  
...  

A novel Gram-stain-negative, strictly aerobic, rod-shaped, brick red-pigmented bacterium, designated R-22-1 c-1T, was isolated from water from Baiyang Lake, Hebei Province, PR China. The strain was able to grow at 20–30 °C (optimum, 30 °C) and pH 6–7 (optimum, pH 6) in Reasoner’s 2A medium. 16S rRNA gene sequence and phylogenetic analyses of R-22-1 c-1T revealed closest relationships to Rufibacter immobilis MCC P1T (97.8 %), Rufibacter sediminis H-1T (97.9 %) and Rufibacter glacialis MDT1-10-3T (97.0 %), with other species of the genus Rufibacter showing less than 97.0 % sequence similarity. The predominant polar lipids were phosphatidylethanolamine, two unidentified aminophospholipids and three unidentified lipids. The major cellular fatty acids were iso-C15 : 0, C15 : 1  ω6c, C17 : 1  ω6c, anteiso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1  ω7c and/or C16 : 1  ω6c) and summed feature 4 (iso-C17 : 1I and/or anteiso-C17 : 1B). The respiratory quinone was MK-7. The draft genome of R-22-1 c-1T was 5.6 Mbp in size, with a G+C content of 50.2 mol%. The average nucleotide identity and digital DNA–DNA hybridization relatedness values between strain R-22-1 c-1T and related type strains were R. immobilis MCC P1T (77.2 and 21.8 %), R. sediminis H-1T (81.6 and 21.4 %) and R. tibetensis 1351T (78.5 and 22.9 %). Based on these phylogenetic, chemotaxonomic and genotypic results, strain R-22-1 c-1T represents a novel species in the genus Rufibacter , for which the name Rufibacter latericius sp. nov. is proposed. The type strain is R-22-1 c-1T (=CGMCC 1.13570T=KCTC 62781T).


Sign in / Sign up

Export Citation Format

Share Document