Palleronia sediminis sp. nov. and Flavivirga algicola sp. nov., two marine bacteria isolated from offshore areas near Weihai

Author(s):  
Xun-Ke Sun ◽  
Ya-Ning Zhang ◽  
Yu-Yao Jia ◽  
Yan-Lin Zhong ◽  
Guan-Jun Chen ◽  
...  

Two bacterial strains, designated SS33T and Y03T, were isolated from marine sediment and marine red alga collected on the coast of Weihai, PR China. Based on the results of 16S rRNA gene sequence analysis, strain SS33T was found to be closely related to Primorskyibacter marinus PX7T, Pelagivirga dicentrarchi YLY04T, Palleronia marisminoris DSM 26347T and Maribius pontilimi GH1-23T with 94.8, 94.6, 94.5 and 94.5 % sequence similarity; strain Y03T was found to be closest to Flavivirga aquimarina EC2D5T, Flavivirga eckloniae ECD14T and Flavivirga amylovorans JC2681T with 96.4, 96.1 and 96.0 % sequence similarity. Strain SS33T grew at 4–37 °C (optimum, 33 °C), at pH 6.0–9.5 (optimum, pH 7.5–8.0) and in the presence of 0–10 % (w/v) NaCl (optimum, 3.0 %). Chemotaxonomic analysis of strain SS33T showed that the predominant respiratory quinone was ubiquinone-10. The major fatty acids (>10.0 %) included C18 : 1  ω7c and C16 : 0. The major polar lipids included phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid, one unidentified glycolipid, one unidentified polar lipid and two unidentified aminolipids. Strain Y03T grew at 15–40 °C (optimum, 28 °C), at pH 6.5–8.0 (optimum, pH 7.0) and in the presence of 0.5–9.0 % (w/v) NaCl (optimum, 2.0%). Chemotaxonomic analysis showed that the predominant respiratory quinone was menaquinone-6. The major fatty acids (>10.0 %) included iso-C15 : 0, iso-C15 : 1 G, iso-C17 : 0 3-OH and iso-C15 : 0 3-OH. The major polar lipids included phosphatidylethanolamine, one unidentified phospholipid, one unidentified aminolipid and four unidentified polar lipids. Based on the polyphasic data, strain SS33T is considered to represent a novel species of the genus Palleronia , for which the name Palleronia sediminis sp. nov. is proposed, with the type strain SS33T (=KCTC 62986T=MCCC 1H00387T). Strain Y03T is considered to represent a novel species of the genus Flavivirga , for which the name Flavivirga algicola sp. nov. is proposed, with the type strain Y03T (=KCTC 72001T=MCCC 1H00386T).

2013 ◽  
Vol 63 (Pt_3) ◽  
pp. 905-912 ◽  
Author(s):  
Yeon-Ju Kim ◽  
Ngoc-Lan Nguyen ◽  
Hang-Yeon Weon ◽  
Deok-Chun Yang

A Gram-negative bacterium, designated DCY13T, was isolated from soil of a ginseng field in South Korea. Comparative analysis of 16S rRNA gene sequences showed that strain DCY13T shared the highest sequence similarity (95.0 %) with Sediminibacterium salmoneum NBRC 103935T and 87.6–91.4 % sequence similarity with other members of the family Chitinophagaceae . Cells were non-spore-forming rods, catalase- and oxidase-positive, motile by gliding and facultatively anaerobic. The only respiratory quinone was menaquinone 7 (MK-7) and the major fatty acids were iso-C17 : 0 3-OH, iso-C15 : 0 and iso-C15 : 1 G. The G+C content of the genomic DNA was 47.5±1.0 mol%. In addition to phosphatidylethanolamine, the major polar lipids were two unidentified aminophospholipids, one unidentified aminolipid and three unidentified polar lipids. The major cell-wall sugars were ribose, xylose and galactose. It is proposed that strain DCY13T represents a novel species in the genus Sediminibacterium , for which the name Sediminibacterium ginsengisoli sp. nov. is proposed. The type strain is DCY13T ( = KCTC 12833T  = JCM 15794T  = DSM 22335T). Emended descriptions of the genus Sediminibacterium and of Sediminibacterium salmoneum are also proposed.


2020 ◽  
Vol 70 (12) ◽  
pp. 6348-6354
Author(s):  
Jiajie Zhang ◽  
Yongle Xu ◽  
Xiao Chen ◽  
Daixi Liu ◽  
Hui Song ◽  
...  

A novel Gram-stain-negative, aerobic, yellow-pigmented bacterium was isolated from seawater of Aoshan Bay, and designated as strain ASW18T. Strain ASW18T was a long-rod-shaped bacterium without flagellum and lacked gliding ability. Based on 16S rRNA gene phylogeny, strain ASW18T showed the closest relationship to Croceivirga radicis MCCC 1A06690T, with a sequence similarity of 97.0 %. Strain ASW18T was able to grow at 25–40 °C, at pH 5.5–9.5 and with 0.5–9 % (w/v) NaCl. The genomic DNA G+C content of strain ASW18T was 37.3 %. The predominant cellular fatty acids of strain ASW18T were iso-C15 : 0, iso-C17 : 0 3-OH and iso-C15 : 1 G. The major polar lipids were phosphatidylethanolamine, phosphatidyldimethylethanolamine, an aminolipid and three unidentified lipids. The respiratory quinone of strain ASW18T was menaquinone with six isoprene units (MK-6). Based on the present polyphasic analysis, strain ASW18T represents a novel species of the genus Croceivirga , for which the name Croceivirga litoralis sp. nov. is proposed; the type strain is ASW18T (=MCCC 1K04203T=KCTC 72852T). In addition, it is also proposed that Muricauda lutea should be reclassified as Croceivirga lutea comb. nov.; the type strain is CSW06T (=CGMCC 1.15761T=JCM 31455T=KCTC 52375T=MCCC 1K03195T).


2020 ◽  
Vol 70 (11) ◽  
pp. 5848-5853 ◽  
Author(s):  
Jaeho Song ◽  
Yochan Joung ◽  
Shan-Hui Li ◽  
Juchan Hwang ◽  
Jang-Cheon Cho

A Gram-stain-negative, rod-shaped, obligately aerobic, motile by a single polar flagellum, chemoheterotrophic bacterium, designated strain IMCC25680T, was isolated from surface water in Chungju Lake, Republic of Korea. 16S rRNA gene sequence analysis revealed that strain IMCC25680T was most closely related to Leeia oryzae HW7T with 95.5% sequence similarity and formed a robust clade with L. oryzae HW7T. Whole genome sequencing showed that strain IMCC25680T had a genome 3.6 Mbp long with 60.7 mol% DNA G+C content. Average nucleotide identity and digital DNA–DNA hybridization values between strain IMCC25680T and L. oryzae HW7T were 72.4% and 18.5%, respectively, indicating that the novel strain represents a novel species of the genus Leeia . The major cellular fatty acids of strain IMCC25680T were iso-C16:0 and summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c). The respiratory quinone detected in the strain was ubiquinone-8. The major polar lipids were found to be phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and two unidentified polar lipids. On the basis of the phylogenetic and phenotypic characterization, strain IMCC25680T was considered to represent a novel species within the genus Leeia , for which the name Leeia aquatica sp. nov. is proposed. The type strain is IMCC25680T (=KACC 19487T =NBRC 113132T).


2020 ◽  
Vol 70 (7) ◽  
pp. 4298-4304 ◽  
Author(s):  
Yeon Bee Kim ◽  
Joon Yong Kim ◽  
Hye Seon Song ◽  
Changsu Lee ◽  
Juseok Kim ◽  
...  

A novel, facultatively anaerobic actinobacterium, designated strain CBA3103T, was isolated from sediment of the Geum River in South Korea. Phylogenetic analysis indicated that strain CBA3103T is most closely related to Raineyella antarctica LZ-22T (98.47 % 16S rRNA gene sequence similarity). The genome of strain CBA3103T was 3 649 865 bp with a DNA G+C content of 69.6 mol%. The average nucleotide identity value between strain CBA3103T and R. antarctica LZ-22T was 79.22 %. Cells of strain CBA3103T were Gram-positive, rod-shaped, 0.6–0.9 µm wide and 1.4–2.4 µm long. Growth occurred at 15–40 °C (optimum, 35 °C), at pH 6.0–7.0 (optimum, pH 7.0) and with 0–2 % NaCl (w/v) (optimum, 0–1 %, w/v). The major cellular fatty acids in strain CBA3103T were anteiso-C15 : 0, anteiso-C15 : 1 A and iso-C14 : 0. The major respiratory quinone was menaquinone-9(H4). The polar lipids of strain CBA3103T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, five unidentified glycolipids and three unidentified phospholipids. Based on the genotypic, phenotypic and chemotaxonomic analyses, strain CBA3103T represents a novel species of the genus Raineyella , for which the name Raineyella fluvialis sp. nov. (type strain CBA3103T=KACC 21446T=DSM 110288T) is proposed.


2020 ◽  
Vol 70 (10) ◽  
pp. 5355-5362 ◽  
Author(s):  
Heeyoung Kang ◽  
Inseong Cha ◽  
Haneul Kim ◽  
Kiseong Joh

Two novel strains (HMF3257T and HMF4905T), isolated from freshwater and bark samples, were investigated to determine their relationships within and between species of the genus Spirosoma by using a polyphasic approach. They were aerobic, Gram-stain-negative, non-motile and rod-shaped bacteria. The major fatty acids (>10%) in both strains were identified as summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 1 ω5c, while strains HMF3257T and HMF4905T contained a moderately high amount of C16 : 0 and iso-C15 : 0, respectively. The predominant respiratory quinone was MK-7 for both strains. In addition to phosphatidylethanolamine and one unidentified glycolipid, the polar lipid profile of strain HMF3257T consisted of three unidentified aminophospholipids, one unidentified aminolipid and two unidentified polar lipids, and that of strain HMF4905T consisted of one unidentified aminophospholipid, two unidentified aminolipids and three unidentified polar lipids. The DNA G+C contents of strains HMF3257T and HMF4905T were 47.2 and 46.4 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains HMF3257T and HMF4905T are closely related to Spirosoma migulaei 15J9-8T (97.0 % sequence similarity), while sharing 97.4 % sequence similarity with each other. The average nucleotide identity value between strains HMF3257T and HMF4905T was 81.1 %, and the digital DNA–DNA hybridization value between these two strains was 24.4 %. Based on the above data, strains HMF3257T and HMF4905T represent two novel members within the genus Spirosoma , for which the names Spirosoma telluris sp. nov. and Spirosoma arboris sp. nov. are proposed, respectively. The type strain of S. telluris is HMF3257T (=KCTC 62463T=NBRC 112670T) and type strain of S. arboris is HMF4905T (=KCTC 72779T=NBRC 114270T).


2020 ◽  
Vol 70 (10) ◽  
pp. 5287-5295 ◽  
Author(s):  
Yajun Ge ◽  
Yuanmeihui Tao ◽  
Jing Yang ◽  
Xin-He Lai ◽  
Dong Jin ◽  
...  

Four unknown strains belonging to the genus Arthrobacter were isolated from plateau wildlife on the Qinghai–Tibet Plateau of PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that the four isolates were separated into two clusters. Cluster I (strains 785T and 208) had the greatest 16S rRNA gene sequence similarity to Arthrobacter citreus (98.6 and 98.7 %, respectively), Arthrobacter luteolus (98.0 and 98.1%, respectively), Arthrobacter gandavensis (97.9 and 98.0 %, respectively) and Arthrobacter koreensis (97.6 and 97.7 %, respectively). Likewise, cluster II (strains J391T and J915) had the highest sequence similarity to Arthrobacter ruber (98.6 and 98.3 %, respectively) and Arthrobacter agilis (98.1 and 97.9  %, respectively). Average nucleotide identity and the digital DNA–DNA hybridization values illustrated that the two type strains, 785T and J391T, represented two separate novel species that are distinct from all currently recognized species in the genus Arthrobacter . These strains had DNA G+C contents of 66.0–66.1 mol% (cluster I) and 68.0 mol% (cluster II). The chemotaxonomic properties of strains 785T and J391T were in line with those of the genus Arthrobacter : anteiso-C15:0 (79.3 and 40.8 %, respectively) as the major cellular fatty acid, MK-8(H2) (65.8 %) or MK-9(H2) (75.6 %) as the predominant respiratory quinone, a polar lipid profile comprising diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, glycolipids and phospholipid, and A3α or A4α as the cell wall peptidoglycan type. On the basis of our results, two novel species in the genus Arthrobacter are proposed, namely Arthrobacter yangruifuii sp. nov. (type strain, 785T=CGMCC 1.16725T=GDMCC 1.1592T=JCM 33491T) and Arthrobacter zhaoguopingii sp. nov. (type strain, J391T=CGMCC 1.17382T=GDMCC 1.1667T=JCM 33841T).


2014 ◽  
Vol 64 (Pt_5) ◽  
pp. 1654-1661 ◽  
Author(s):  
Dong-Wook Hyun ◽  
Na-Ri Shin ◽  
Min-Soo Kim ◽  
Pil Soo Kim ◽  
Mi-Ja Jung ◽  
...  

A novel Gram-staining-negative, aerobic, non-motile, yellow-to-orange carotenoid-type-pigmented and rod-shaped bacterium, designated strain WP25T, was isolated from the intestine of a comb pen shell, Atrina pectinata, which was collected from the South Sea near Yeosu in Korea. The isolate grew optimally at 20 °C, at pH 7 and with 2 % (w/v) NaCl. 16S rRNA gene sequence analysis showed that strain WP25T belonged to the genus Polaribacter in the family Flavobacteriaceae and the highest sequence similarity was shared with the type strain of Polaribacter sejongensis (98.5 %). The major cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0, C15 : 1ω6c and iso-C15 : 0 3-OH. The main respiratory quinone was menaquinone MK-6. The polar lipids of strain WP25T were phosphatidylethanolamine, two unidentified aminolipids, an unidentified phospholipid and four unidentified lipids. The genomic DNA G+C content was 31.2 mol%. DNA–DNA hybridization experiments indicated <12.6 % genomic relatedness with closely related strains. Based on phylogenetic, phenotypic and genotypic analyses, strain WP25T represents a novel species in the genus Polaribacter , for which the name Polaribacter atrinae sp. nov. is proposed, with the type strain WP25T ( = KACC 17473T = JCM 19202T).


2013 ◽  
Vol 63 (Pt_4) ◽  
pp. 1323-1328 ◽  
Author(s):  
William J. Wolfgang ◽  
Teresa V. Passaretti ◽  
Reashma Jose ◽  
Jocelyn Cole ◽  
An Coorevits ◽  
...  

A polyphasic analysis was undertaken of seven independent isolates of Gram-negative cocci collected from pathological clinical samples from New York, Louisiana, Florida and Illinois and healthy subgingival plaque from a patient in Virginia, USA. The 16S rRNA gene sequence similarity among these isolates was 99.7–100 %, and the closest species with a validly published name was Neisseria lactamica (96.9 % similarity to the type strain). DNA–DNA hybridization confirmed that these isolates are of the same species and are distinct from their nearest phylogenetic neighbour, N. lactamica . Phylogenetic analysis of 16S and 23S rRNA gene sequences indicated that the novel species belongs in the genus Neisseria . The predominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) and C18 : 1ω7c. The cellular fatty acid profile, together with other phenotypic characters, further supports the inclusion of the novel species in the genus Neisseria . The name Neisseria oralis sp. nov. (type strain 6332T  = DSM 25276T  = LMG 26725T) is proposed.


2013 ◽  
Vol 63 (Pt_2) ◽  
pp. 703-708 ◽  
Author(s):  
Dong-Heon Lee ◽  
Sun Ja Cho ◽  
Suk Min Kim ◽  
Sun Bok Lee

A novel bacterium, designated strain F051-1T, isolated from a seawater sample collected from the coast at Damupo beach in Pohang, Korea, was investigated in a polyphasic taxonomic study. Cells were yellow-pigmented, strictly aerobic, Gram-staining-negative and rod-shaped. The temperature, pH and NaCl ranges for growth were 4–30 °C, pH 6.0–9.0 and 1.0–6.0 % (w/v), respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain F051-1T belongs to the genus Psychroserpens in the family Flavobacteriaceae . Its closest relatives were Psychroserpens burtonensis ACAM 188T (96.8 % 16S rRNA gene sequence similarity) and Psychroserpens mesophilus KOPRI 13649T (95.7 %). The major cellular fatty acids were iso-C15 : 0, iso-C15 : 1 G and anteiso-C15 : 0. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, two unidentified aminolipids, one unidentified phospholipid and eight unidentified lipids. The major respiratory quinone was menaquinone-6 and the genomic DNA G+C content of the strain was 33.5 mol%. On the basis of phenotypic, phylogenetic and genotypic data, strain F051-1T represents a novel species within the genus Psychroserpens , for which the name Psychroserpens damuponensis sp. nov. is proposed. The type strain is F051-1T ( = KCTC 23539T  = JCM 17632T).


2020 ◽  
Vol 70 (5) ◽  
pp. 3323-3327 ◽  
Author(s):  
Qian Wang ◽  
Sheng-Dong Cai ◽  
Jie Liu ◽  
De-Chao Zhang

The Gram-strain-negative, rod-shaped, facultatively anaerobic, non-motile bacterial strain, designated S1-10T, was isolated from marine sediment. Strain S1-10T grew at 4–42 °C (optimally at 30–35 °C), at pH 7.0–10 (optimally at pH 9) and in the presence of 0.5–8 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-10T was related to the genus Aequorivita and had highest 16S rRNA gene sequence similarity to Aequorivita viscosa 8-1bT (97.7%). The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The main respiratory quinone was menaquinone 6 (MK-6). The genomic DNA G+C content of strain S1-10T was 34.6 mol%. The polar lipid profile of strain S1-10T contained phosphatidylethanolamine, two aminolipids, two glycolipids, one phosphoglycolipid and three unidentified polar lipids. In addition, the maximum values of in silico DNA–DNA hybridization (isDDH) and average nucleotide identity (ANI) between strain S1-10T and A. viscosa CGMCC 1.11023T were 15.4 and 75.7 %, respectively. Combined data from phenotypic, phylogenetic, isDDH and ANI analyses demonstrated that strain S1-10T is the representative of a novel species of the genus Aequorivita , for which we propose the name Aequorivita sinensis sp. nov. (type strain S1-10T=CGMCC 1.12579T=JCM 19789T). We also propose that Vitellibacter todarodis and Vitellibacter aquimaris should be transferred into genus Aequorivita and be named Aequorivita todarodis comb. nov. and Aequorivita aquimaris comb. nov., respectively. The type strain of Aequorivita todarodis comb. nov. is MYP2-2T (= KCTC 62141T= NBRC 113025T) and the type strain of Aequorivita aquimaris comb. nov. is D-24T (=KCTC 42708T=DSM 101732T).


Sign in / Sign up

Export Citation Format

Share Document