scholarly journals Evaluation of a PCR melting profile method for intraspecies differentiation of Trichophyton rubrum and Trichophyton interdigitale

2010 ◽  
Vol 59 (2) ◽  
pp. 185-192 ◽  
Author(s):  
Justyna Leibner-Ciszak ◽  
Anita Dobrowolska ◽  
Beata Krawczyk ◽  
Aleksandra Kaszuba ◽  
Paweł Stączek

In order to identify the source of infections caused by dermatophytes, as well as the pathogen transmission pathway, there is a need to determine methods that allow detailed genetic differentiation of the strains within the dermatophyte genera. In this work, a PCR melting profile (PCR-MP) technique based on the ligation of adaptors and the difference in melting temperatures of DNA restriction fragments was used for the first time for intraspecies genotyping of dermatophytes. Clinical isolates and reference strains of dermatophytes isolated from skin, scalp, toenails and fingernails were used for this study. PCR-MP and random amplification of polymorphic DNA (RAPD) were used to type 11 isolates of Trichophyton rubrum, 40 isolates of Trichophyton interdigitale and 14 isolates of Microsporum canis. The results distinguished five types (containing one subtype) characteristic for T. rubrum and seven types characteristic for T. interdigitale using the PCR-MP technique. Analysis conducted using RAPD revealed five types for T. rubrum and four types for T. interdigitale isolates. No differentiation was observed for the M. canis isolates with either method. These results demonstrate that PCR-MP is a reliable method for the differentiation of T. rubrum and T. interdigitale strains and yields a discriminatory power that is at least equal to that of RAPD.

2014 ◽  
Vol 63 (3) ◽  
pp. 283-290 ◽  
Author(s):  
ANITA CIESIELSKA ◽  
MAGDALENA KOZŁOWSKA ◽  
MAREK GADZALSKI ◽  
MARIUSZ WOREK ◽  
ADAM JAWORSKI ◽  
...  

In this study, two PCR-based methods (MSP-PCR and PCR-MP) were compared for their abilities to identify intraspecies variations of 23 isolates of Trichophyton rubrum, 78 isolates of Trichophyton interdigitale and 22 isolates of Microsporum canis, obtained mainly from patients in Lódź city. The results allowed to distinguish four types (containing two subtypes) characteristic for T. interdigitale and three types characteristic for T. rubrum using PCR-MP method. Analysis conducted using MSP-PCR with (GACA)4 primer revealed four types for T. rubrum and three types (containing one subtype) for T. interdigitale and with (GTG), primer showed two types (containing one subtype) for T. rubrum and six types (containing one subtype) for T. interdigitale. No differentiation was observed for the M. canis isolates with either method.


1986 ◽  
Vol 43 (10) ◽  
pp. 1866-1872 ◽  
Author(s):  
Lucia Irene González-Villaseñor ◽  
Amanda M. Burkhoff ◽  
Víctor Corces ◽  
Dennis A. Powers

Analysis of mitochondrial DNA endonuclease restriction patterns is a powerful tool for studying related species and variation within species. The ethidium bromide staining technique has limited the number of digestions of mitochondrial DNA per individual. Because 32P-end-labeling also imposes severe limitations, we have resorted to cloning the fish (Fundulus heteroclitus) mitochondrial genome in the lambda replacement vector EMBL-3. The clone was used as a radioactive probe via Southern blotting to detect mitochondrial DNA restriction fragments obtained by multiple restriction endonuclease digestions from small amounts of tissue. This technique offers much greater sensitivity than ethidium bromide staining. Moreover, it eliminates the expense and time to obtain highly purified mitochondrial DNA for the 32P-end-labeling procedure. It is also useful when the mtDNA is prepared from frozen tissue which has been a problem with the 32P-end-labeling technique. Because the cloned mitochondrial DNA has a high degree of cross-hybridization with the mitochondrial DNA of certain other fishes, it can be used to probe the mitochondrial DNA restriction patterns of a variety of fish species. However, its usefulness is restricted by the degree of relatedness to the species being cloned.


1985 ◽  
Vol 5 (9) ◽  
pp. 2298-2306
Author(s):  
S E Kane ◽  
K Beemon

N6-methyladenosine (m6A) residues are present as internal base modifications in most higher eucaryotic mRNAs; however, the biological function of this modification is not known. We describe a method for localizing and quantitating m6A within a large RNA molecule, the genomic RNA of Rous sarcoma virus. Specific fragments of 32P-labeled Rous sarcoma virus RNA were isolated by hybridization with complementary DNA restriction fragments spanning nucleotides 6185 to 8050. RNA was digested with RNase and finger-printed, and individual oligonucleotides were analyzed for the presence of m6A by paper electrophoresis and thin-layer chromatography. With this technique, seven sites of methylation in this region of the Rous sarcoma virus genome were localized at nucleotides 6394, 6447, 6507, 6718, 7414, 7424, and 8014. Further, m6A was observed at two additional sites whose nucleotide assignments remain ambiguous. A clustering of two or more m6A residues was seen at three positions within the RNA analyzed. Modification at certain sites was found to be heterogeneous, in that different molecules of RNA appeared to be methylated differently. Previous studies have determined that methylation occurs only in the sequences Gm6AC and Am6AC. We observed a high frequency of methylation at PuGm6ACU sequences. The possible involvement of m6A in RNA splicing events is discussed.


1984 ◽  
Vol 4 (9) ◽  
pp. 1800-1806
Author(s):  
T H Bestor ◽  
S B Hellewell ◽  
V M Ingram

Methyl-accepting assays and a sensitive method for labeling specific CpG sites have been used to show that the DNA of F9 embryonal carcinoma cells decreases in 5-methylcytosine content by ca. 9% during retinoic acid-induced differentiation, whereas the DNA of dimethyl sulfoxide-induced Friend murine erythroleukemia (MEL) cells loses ca. 3.8% of its methyl groups. These values correspond to the demethylation of 2.2 X 10(6) and 0.9 X 10(6) 5'-CpG-3' sites per haploid genome in differentiating F9 and MEL cells, respectively. Fluorography of DNA restriction fragments methylated in vitro and displayed on agarose gels showed that demethylation occurred throughout the genome. In uninduced F9 cells, the sequence TCGA tended to be more heavily methylated than did the sequence CCGG, whereas this tendency was reversed in MEL cells. The kinetics of in vitro DNA methylation reactions catalyzed by MEL cell DNA methyltransferase showed that substantial numbers of hemimethylated sites accumulate in the DNA of terminally differentiating F9 and MEL cells, implying that a partial loss of DNA-methylating activity may accompany terminal differentiation in these two cell types.


2020 ◽  
Vol 1 (1) ◽  
pp. 31-40
Author(s):  
Desi Harnis ◽  
Rusmawardiana ◽  
, Fifa Argentina

Background Superficial mycoses is a fungal infection of the skin, nails and hair thatcaused by dematophytes, yeast and mold. Superficial mycoses infections are commonlyfound in high temperature and humidity area such as Indonesia. Palembang is one ofregions in Indonesia has a high temperature and humidity, considered the incidenceof this disease is high. A retrospective study of new cases of superficial mycoses, datataken from medical records and register book at Policlinic of Dermatology andVenereology Dr. Moh. Hoesin Palembang during 5 years from January 2014-December2018. There were 1,236 (17.1%) new cases of superficial mycoses. Incidence ofsuperficial mycoses varies with range 6.9%-23%. The most common superficialmycoses is dermatophytes (38,3%). Microsporum canis, Trichophyton rubrum danTricophyton hmentagrophytes are frequent isolates in this study. The most age groupis 36-45 years (17.6%) with male more than female. Superficial mycoses are often foundin students (26.9%), followed by unskilled workers (20.8%). Of the 1,236 new cases,125 patients had comorbidities, such as malignancy 21 (16.8%) patients,cerebrovascular disease and diabetes mellitus each 16 patients (7.4%). Inguinal andabdomen are the most commonly infected regions. 656 (53.1%) patients was giventopical antifungal. The most common topical antifungal was ketoconazole 2% cream(62%) and systemic antifungal was itraconazole (55,3%).Conclusion: Cases ofsuperficial mycoses, especially dermatophytosis and Malassezia were still commonlyfound, especially in Palembang.


Genetics ◽  
1986 ◽  
Vol 112 (1) ◽  
pp. 93-105
Author(s):  
C E Vallejos ◽  
S D Tanksley ◽  
R Bernatzky

ABSTRACT DNA restriction fragments containing sequences homologous to the ribosomal RNA (45s), the major chlorophyll a/b binding polypeptide (CAB) and the small subunit of ribulose bisphosphate carboxylase (RBCS) genes have been localized and mapped in the tomato nuclear genome by linkage analysis. Ribosomal RNA genes map to a single locus, R45s, which resides in a terminal position on the short arm of chromosome 2 and corresponds to the Nucleolar Organizer Region. The size of the 45s repeating unit is estimated to be approximately 9 kb in Lycopersicon esculentum and 11 kb in Lycopersicon pennellii. Five loci were found to contain CAB sequences. Two of the loci, Cab-1 (chromosome 2) and Cab-3 (chromosome 8), together accounted for more than 80% of the hybridization signal. These loci contain more than one CAB structural gene. The other three loci, Cab-2 (chromosome 8), Cab-4 (chromosome 7) and Cab-5 (chromosome 12), each account for <10% of the total signal and may contain only a single copy of the CAB structural sequence. Three loci were found to contain RBCS sequences. Rbcs-2 (chromosome 3) and Rbcs-3 (chromosome 2) were responsible for >80% of the signal, with the remainder being associated with Rbcs-1 (chromosome 2). Rbcs-2 and Rbcs-3 may contain more than one copy of the gene.


Sign in / Sign up

Export Citation Format

Share Document