scholarly journals Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis

Microbiology ◽  
2009 ◽  
Vol 155 (5) ◽  
pp. 1516-1522 ◽  
Author(s):  
Olivia L. Champion ◽  
Ian A. M. Cooper ◽  
Sarah L. James ◽  
Donna Ford ◽  
Andrey Karlyshev ◽  
...  

We report that larvae of the wax moth (Galleria mellonella) are susceptible to infection with the human enteropathogen Yersinia pseudotuberculosis at 37 °C. Confocal microscopy demonstrated that in the initial stages of infection the bacteria were taken up into haemocytes. To evaluate the utility of this model for screening Y. pseudotuberculosis mutants we constructed and tested a superoxide dismutase C (sodC) mutant. This mutant showed increased susceptibility to superoxide, a key mechanism of killing in insect haemocytes and mammalian phagocytes. It showed reduced virulence in the murine yersiniosis infection model and in contrast to the wild-type strain IP32953 was unable to kill G. mellonella. The complemented mutant regained all phenotypic properties associated with SodC, confirming the important role of this metalloenzyme in two Y. pseudotuberculosis infection models.

2020 ◽  
Vol 78 (8) ◽  
Author(s):  
Monalessa Fábia Pereira ◽  
Ciro César Rossi ◽  
Giarlã Cunha da Silva ◽  
Jéssica Nogueira Rosa ◽  
Denise Mara Soares Bazzolli

ABSTRACT The larva of the greater wax moth Galleria mellonella is an increasingly popular model for assessing the virulence of bacterial pathogens and the effectiveness of antimicrobial agents. In this review, we discuss details of the components of the G. mellonella larval immune system that underpin its use as an alternative infection model, and provide an updated overview of the state of the art of research with G. mellonella infection models to study bacterial virulence, and in the evaluation of antimicrobial efficacy. Emphasis is given to virulence studies with relevant human and veterinary pathogens, especially Escherichia coli and bacteria of the ESKAPE group. In addition, we make practical recommendations for larval rearing and testing, and overcoming potential limitations of the use of the model, which facilitate intra- and interlaboratory reproducibility.


2021 ◽  
Author(s):  
Maj Brodmann ◽  
Sophie Schnider ◽  
Marek Basler

Francisella tularensis causes the deadly zoonotic disease tularemia in humans and is able to infect a broad range of organisms including arthropods, which are thought to play a major role in Francisella transmission. However, while mammalian in vitro and in vivo infection models are widely used to investigate Francisella pathogenicity, a detailed characterization of the major Francisella virulence factor, a non-canonical T6SS, in an arthropod in vivo infection model is missing. Here we use Galleria mellonella larvae to analyze the role of the Francisella T6SS and its corresponding effectors in F. novicida virulence. We report that G. mellonella larvae killing depends on the functional T6SS and infectious dose. In contrast to other mammalian in vivo infection models, even one of PdpC, PdpD or OpiA T6SS effectors is sufficient to kill G. mellonella larvae while sheath recycling by ClpB is dispensable. We further demonstrate that treatment by polyethylene glycol (PEG) activates Francisella T6SS in liquid culture and that this is independent of the response regulator PmrA. PEG-activated IglC secretion is dependent on T6SS structural component PdpB but independent of putative effectors PdpC, PdpD, AnmK and OpiB1-3. The results of larvae infection and secretion assay suggest that AnmK, a putative T6SS component with unknown function, interferes with OpiA-mediated toxicity but not with general T6SS activity. We establish that the easy-to-use G. mellonella larvae infection model provides new insights into function of T6SS and pathogenesis of Francisella.


2003 ◽  
Vol 71 (5) ◽  
pp. 2404-2413 ◽  
Author(s):  
Sachiko Miyata ◽  
Monika Casey ◽  
Dara W. Frank ◽  
Frederick M. Ausubel ◽  
Eliana Drenkard

ABSTRACT Nonvertebrate model hosts represent valuable tools for the study of host-pathogen interactions because they facilitate the identification of bacterial virulence factors and allow the discovery of novel components involved in host innate immune responses. In this report, we determined that the greater wax moth caterpillar Galleria mellonella is a convenient nonmammalian model host for study of the role of the type III secretion system (TTSS) in Pseudomonas aeruginosa pathogenesis. Based on the observation that a mutation in the TTSS pscD gene of P. aeruginosa strain PA14 resulted in a highly attenuated virulence phenotype in G. mellonella, we examined the roles of the four known effector proteins of P. aeruginosa (ExoS, ExoT, ExoU, and ExoY) in wax moth killing. We determined that in P. aeruginosa strain PA14, only ExoT and ExoU play a significant role in G. mellonella killing. Strain PA14 lacks the coding sequence for the ExoS effector protein and does not seem to express ExoY. Moreover, using ΔexoU ΔexoY, ΔexoT ΔexoY, and ΔexoT ΔexoU double mutants, we determined that individual translocation of either ExoT or ExoU is sufficient to obtain nearly wild-type levels of G. mellonella killing. On the other hand, data obtained with a ΔexoT ΔexoU ΔexoY triple mutant and a ΔpscD mutant suggested that additional, as-yet-unidentified P. aeruginosa components of type III secretion are involved in virulence in G. mellonella. A high level of correlation between the results obtained in the G. mellonella model and the results of cytopathology assays performed with a mammalian tissue culture system validated the use of G. mellonella for the study of the P. aeruginosa TTSS.


2019 ◽  
Author(s):  
Muneefah A. Alenezi ◽  
Tariq M. Butt ◽  
Daniel C. Eastwood

ABSTRACTMicroRNAs (miRNAs) play an important role in regulating gene expression and are involved in developmental processes in animals, plants and fungi. To understand the role of miRNAs in a biological system, it is important to optimise the extraction procedures to obtain high quality and quantity nucleic acid that enable high throughput sequencing and expression analysis. Numerous kit-based miRNA extraction protocols have been optimised generally to single cell or tissue cultures. Fungi, however, often occupy physically and chemically complex environments which miRNA make extraction challenging, such as fungal pathogens interacting within plant or animal host tissue. We used aGalleria mellonella(wax moth) larvae and entomopathogenic fungusMetarhizium brunneum ARSEF 4556host/pathogen model to compare commercially available miRNA extraction kits (Invitrogen PureLink™ miRNA Isolation Kit, Ambion mirVana™miRNA Isolation Kit and Norgen microRNA purification Kit). Our results showed reproducible and significant differences in miRNAs extraction between the kits, with the Invitrogen PureLink™ miRNA Isolation protocol demonstrating the best performance in terms of miRNA quantity, quality and integrity isolated from fungus-infected insect tissue.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2319-2330 ◽  
Author(s):  
Walter A. Vargas ◽  
Prasun K. Mukherjee ◽  
David Laughlin ◽  
Aric Wiest ◽  
Maria E. Moran-Diez ◽  
...  

Using a gene disruption strategy, we generated mutants in the gliP locus of the plant-beneficial fungus Trichoderma virens that were no longer capable of producing gliotoxin. Phenotypic assays demonstrated that the gliP-disrupted mutants grew faster, were more sensitive to oxidative stress and exhibited a sparse colony edge compared with the WT strain. In a plate confrontation assay, the mutants deficient in gliotoxin production were ineffective as mycoparasites against the oomycete, Pythium ultimum, and the necrotrophic fungal pathogen, Sclerotinia sclerotiorum, but retained mycoparasitic ability against Rhizoctonia solani. Biocontrol assays in soil showed that the mutants were incapable of protecting cotton seedlings from attack by P. ultimum, against which the WT strain was highly effective. The mutants, however, were as effective as the WT strain in protecting cotton seedlings against R. solani. Loss of gliotoxin production also resulted in a reduced ability of the mutants to attack the sclerotia of S. sclerotiorum compared with the WT. The addition of exogenous gliotoxin to the sclerotia colonized by the mutants partially restored their degradative abilities. Interestingly, as in Aspergillus fumigatus, an opportunistic human pathogen, gliotoxin was found to be involved in pathogenicity of T. virens against larvae of the wax moth, Galleria mellonella. The loss of gliotoxin production in T. virens was restored by complementation with the gliP gene from A. fumigatus. We have, thus, demonstrated that the putative gliP cluster of T. virens is responsible for the biosynthesis of gliotoxin, and gliotoxin is involved in mycoparasitism and biocontrol properties of this plant-beneficial fungus.


2011 ◽  
Vol 79 (7) ◽  
pp. 2638-2645 ◽  
Author(s):  
Charlotte Michaux ◽  
Maurizio Sanguinetti ◽  
Fany Reffuveille ◽  
Yanick Auffray ◽  
Brunella Posteraro ◽  
...  

ABSTRACTPhylogenetic analysis of the crystal structure of theEnterococcus faecalisSlyA (EF_3002) transcriptional factor places it between the SlyA and MarR regulator subfamilies. Proteins of these families are often involved in the regulation of genes important for bacterial virulence and stress response. To gather evidence for the role of this putative regulator inE. faecalisbiology, we dissected the genetic organization of theslyA-EF_3001 locus and constructed aslyAdeletion mutant as well as complemented strains. Interestingly, compared to the wild-type parent, the ΔslyAmutant is more virulent in an insect infection model (Galleria mellonella), exhibits increased persistence in mouse kidneys and liver, and survives better inside peritoneal macrophages. In order to identify a possible SlyA regulon, global microarray transcriptional analysis was performed. This study revealed that theslyA-EF_3001 locus appears to be autoregulated and that 117 genes were differentially regulated in the ΔslyAmutant. In the mutant strain, 111 were underexpressed and 6 overexpressed, indicating that SlyA functions mainly as an activator of transcription.


Sign in / Sign up

Export Citation Format

Share Document