Molecular characterization of the InvE regulator in the secretion of type III secretion translocases in Salmonella enterica serovar Typhimurium

Microbiology ◽  
2013 ◽  
Vol 159 (Pt_3) ◽  
pp. 446-461 ◽  
Author(s):  
Jin Seok Kim ◽  
Jung Im Jang ◽  
Jeong Seon Eom ◽  
Chang Heon Oh ◽  
Hyeon Guk Kim ◽  
...  
Vaccine ◽  
2006 ◽  
Vol 24 (37-39) ◽  
pp. 6216-6224 ◽  
Author(s):  
Camille N. Kotton ◽  
Alexander J. Lankowski ◽  
Nathaniel Scott ◽  
David Sisul ◽  
Li Mei Chen ◽  
...  

2015 ◽  
Vol 49 (4) ◽  
pp. 502-512 ◽  
Author(s):  
İştar DOLAPÇI ◽  
Alper TEKELİ ◽  
Fikret ŞAHİN ◽  
Birsel ERDEM

2000 ◽  
Vol 182 (8) ◽  
pp. 2262-2268 ◽  
Author(s):  
Stephanie C. Tucker ◽  
Jorge E. Galán

ABSTRACT Salmonella enterica encodes a type III secretion system within a pathogenicity island located at centisome 63 that is essential for virulence. All type III secretion systems require the function of a family of low-molecular-weight proteins that aid the secretion process by acting as partitioning factors and/or secretion pilots. One such protein is SicA, which is encoded immediately upstream of the type III secreted proteins SipB and SipC. We found that the absence of SicA results in the degradation of both SipB and SipC. Interestingly, in the absence of SipC, SipB was not only stable but also secreted at wild-type levels in a sicA mutant background, indicating that SicA is not required for SipB secretion. We also found that SicA is capable of binding both SipB and SipC. These results are consistent with a SicA role as a partitioning factor for SipB and SipC, thereby preventing their premature association and degradation. We also found that introduction of a sicA null mutation results in the lack of expression of SopE, another type III-secreted protein. Such an effect was shown to be transcriptional. Introduction of a loss-of-function sipC mutation into the sicAmutant background rescued sopE expression. These results indicate that the effect of sicA on sopEexpression is indirect and most likely exerted through a regulatory factor(s) partitioned by SicA from SipC. These studies therefore describe a surprisingly complex function for the Salmonella enterica type III secretion-associated chaperone SicA.


2001 ◽  
Vol 183 (4) ◽  
pp. 1452-1454 ◽  
Author(s):  
K. Heran Darwin ◽  
Lloyd S. Robinson ◽  
Virginia L. Miller

ABSTRACT SigD is translocated into eucaryotic cells by a type III secretion system. In this work, evidence that the putative chaperone SigE directly interacts with SigD is presented. A bacterial two-hybrid system demonstrated that SigE can interact with itself and SigD. In addition, SigD was specifically copurified with SigE-His6on a nickel column.


Sign in / Sign up

Export Citation Format

Share Document