Site-directed mutagenesis of an extradiol dioxygenase involved in tetralin biodegradation identifies residues important for activity or substrate specificity

Microbiology ◽  
2003 ◽  
Vol 149 (6) ◽  
pp. 1559-1567 ◽  
Author(s):  
Eloísa Andújar ◽  
Eduardo Santero

The sequence of the extradiol dioxygenase ThnC, involved in tetralin biodegradation, was aligned with other extradiol dioxygenases involved in biodegradation of polycyclic compounds, and a three-dimensional model of ThnC, based on the structure of the previously crystallized 2,3-dihydroxybiphenyl dioxygenase from Burkholderia fungorum LB400, was built. In order to assess the functional importance of some non-active-site residues whose relevance could not be established by structural information, a number of positions surrounding the substrate-binding site were mutated in ThnC. Ten mutant proteins were purified and their activity towards 1,2-dihydroxytetralin, 1,2-dihydroxynaphthalene and 2,3-dihydroxybiphenyl was characterized. N213H, Q198H, G206M, A282R and A282G mutants increased k cat/K m at least twofold using 1,2-dihydroxytetralin as the substrate, thus showing that activity of ThnC is not maximized for this substrate. N213H and Q198H mutants increased k cat/K m using any of the substrates tested, thus showing the relevance for activity of these two histidines, which are highly conserved in dihydroxybiphenyl dioxygenases, but not present in dihydroxynaphthalene dioxygenases. Different substitutions in position 282 had different effects on general activity or substrate specificity, thus showing the functional importance of the most C-terminal β-sheet of the protein. A251M and G206M mutants showed increased activity specifically for a particular substrate. N213H, G206M, A282R, A282G and Y177I substitutions resulted in enzymes more tolerant to acidic pH, the most striking effect being observed in mutant Y177I, which showed maximal activity at pH 5·5. In addition, Q198D and V175D mutants, which had altered K m, also showed altered sensitivity to substrate inhibition, thus indicating that inhibition is exerted through the same binding site. This mutational analysis, therefore, identified conserved residues important for activity or substrate specificity, and also shed some light on the mechanism of substrate inhibition exhibited by extradiol dioxygenases.

2008 ◽  
Vol 412 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Faylene A. Lunn ◽  
Travis J. MacLeod ◽  
Stephen L. Bearne

CTPS (cytidine 5′-triphosphate synthase) catalyses the ATP-dependent formation of CTP from UTP using either ammonia or L-glutamine as the nitrogen source. Binding of the substrates ATP and UTP, or the product CTP, promotes oligomerization of CTPS from inactive dimers to active tetramers. In the present study, site-directed mutagenesis was used to replace the fully conserved glycine residues 142 and 143 within the UTP-binding site and 146 within the CTP-binding site of Escherchia coli CTPS. CD spectral analyses of wild-type CTPS and the glycine mutants showed a slight reduction of ∼15% in α-helical content for G142A and G143A relative to G146A and wild-type CTPS, suggesting some local alterations in structure. Relative to wild-type CTPS, the values of kcat/Km for ammonia-dependent and glutamine-dependent CTP formation catalysed by G143A were reduced 22- and 16-fold respectively, whereas the corresponding values for G146A were reduced only 1.4- and 1.8-fold respectively. The glutaminase activity (kcat) of G146A was similar to that exhibited by the wild-type enzyme, whereas that of G143A was reduced 7.5-fold. G146A exhibited substrate inhibition at high concentrations of ammonia and a partial uncoupling of glutamine hydrolysis from CTP production. Although the apparent affinity (1/[S]0.5) of G143A and G146A for UTP was reduced ∼4-fold, G146A exhibited increased co-operativity with respect to UTP. Thus mutations in the CTP-binding site can affect UTP-dependent activity. Surprisingly, G142A was inactive with both ammonia and glutamine as substrates. Gel-filtration HPLC experiments revealed that both G143A and G146A were able to form active tetramers in the presence of ATP and UTP; however, nucleotide-dependent tetramerization of G142A was significantly impaired. Our observations highlight the sensitivity of the structure of CTPS to mutations in the UTP- and CTP-binding sites, with Gly142 being critical for nucleotide-dependent oligomerization of CTPS to active tetramers. This ‘structural sensitivity’ may limit the number and/or types of mutations that could be selected for during the development of resistance to cytotoxic pyrimidine nucleotide analogues.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Ivan Campeotto ◽  
Francis Galaway ◽  
Shahid Mehmood ◽  
Lea K. Barfod ◽  
Doris Quinkert ◽  
...  

ABSTRACT Plasmodium falciparum RH5 is a secreted parasite ligand that is essential for erythrocyte invasion through direct interaction with the host erythrocyte receptor basigin. RH5 forms a tripartite complex with two other secreted parasite proteins, CyRPA and RIPR, and is tethered to the surface of the parasite through membrane-anchored P113. Antibodies against RH5, CyRPA, and RIPR can inhibit parasite invasion, suggesting that vaccines containing these three components have the potential to prevent blood-stage malaria. To further explore the role of the P113-RH5 interaction, we selected monoclonal antibodies against P113 that were either inhibitory or noninhibitory for RH5 binding. Using a Fab fragment as a crystallization chaperone, we determined the crystal structure of the RH5 binding region of P113 and showed that it is composed of two domains with structural similarities to rhamnose-binding lectins. We identified the RH5 binding site on P113 by using a combination of hydrogen-deuterium exchange mass spectrometry and site-directed mutagenesis. We found that a monoclonal antibody to P113 that bound to this interface and inhibited the RH5-P113 interaction did not inhibit parasite blood-stage growth. These findings provide further structural information on the protein interactions of RH5 and will be helpful in guiding the development of blood-stage malaria vaccines that target RH5. IMPORTANCE Malaria is a deadly infectious disease primarily caused by the parasite Plasmodium falciparum. It remains a major global health problem, and there is no highly effective vaccine. A parasite protein called RH5 is centrally involved in the invasion of host red blood cells, making it—and the other parasite proteins it interacts with—promising vaccine targets. We recently identified a protein called P113 that binds RH5, suggesting that it anchors RH5 to the parasite surface. In this paper, we use structural biology to locate and characterize the RH5 binding region on P113. These findings will be important to guide the development of new antimalarial vaccines to ultimately prevent this disease, which affects some of the poorest people on the planet.


2011 ◽  
Vol 77 (16) ◽  
pp. 5730-5738 ◽  
Author(s):  
Hanna M. Dudek ◽  
Gonzalo de Gonzalo ◽  
Daniel E. Torres Pazmiño ◽  
Piotr Stępniak ◽  
Lucjan S. Wyrwicz ◽  
...  

ABSTRACTBaeyer-Villiger monooxygenases catalyze oxidations that are of interest for biocatalytic applications. Among these enzymes, phenylacetone monooxygenase (PAMO) fromThermobifida fuscais the only protein showing remarkable stability. While related enzymes often present a broad substrate scope, PAMO accepts only a limited number of substrates. Due to the absence of a substrate in the elucidated crystal structure of PAMO, the substrate binding site of this protein has not yet been defined. In this study, a structural model of cyclopentanone monooxygenase, which acts on a broad range of compounds, has been prepared and compared with the structure of PAMO. This revealed 15 amino acid positions in the active site of PAMO that may account for its relatively narrow substrate specificity. We designed and analyzed 30 single and multiple mutants in order to verify the role of these positions. Extensive substrate screening revealed several mutants that displayed increased activity and altered regio- or enantioselectivity in Baeyer-Villiger reactions and sulfoxidations. Further substrate profiling resulted in the identification of mutants with improved catalytic properties toward synthetically attractive compounds. Moreover, the thermostability of the mutants was not compromised in comparison to that of the wild-type enzyme. Our data demonstrate that the positions identified within the active site of PAMO, namely, V54, I67, Q152, and A435, contribute to the substrate specificity of this enzyme. These findings will aid in more dedicated and effective redesign of PAMO and related monooxygenases toward an expanded substrate scope.


2006 ◽  
Vol 188 (17) ◽  
pp. 6179-6183 ◽  
Author(s):  
Jung-Kul Lee ◽  
Ee-Lui Ang ◽  
Huimin Zhao

ABSTRACT Molecular modeling and mutational analysis (site-directed mutagenesis and saturation mutagenesis) were used to probe the molecular determinants of the substrate specificity of aminopyrrolnitrin oxygenase (PrnD) from Pseudomonas fluorescens Pf-5. There are 17 putative substrate-contacting residues, and mutations at two of the positions, positions 312 and 277, could modulate the enzyme substrate specificity separately or in combination. Interestingly, several of the mutants obtained exhibited higher catalytic efficiency (approximately two- to sevenfold higher) with the physiological substrate aminopyrrolnitrin than the wild-type enzyme exhibited.


1995 ◽  
Vol 73 (7) ◽  
pp. 860-865 ◽  
Author(s):  
Tung Ming Fong ◽  
Ruey-Ruey C. Huang ◽  
Hong Yu ◽  
Dennis Underwood ◽  
Margaret A. Cascieri ◽  
...  

The interactions of the NK1 receptor with peptide agonists or nonpeptide antagonists have been investigated by site-directed mutagenesis and computer modeling. At least 10 residues in the extracellular and transmembrane regions of the receptor are required for the binding of many peptide agonists. The C-terminal amide of peptide agonists is likely to be bound near Asn-85. Residues likely to be involved in the subsequent receptor activation include Glu-78 and Tyr-205. The binding site for nonpeptide antagonists can be defined by at least five residues in transmembrane helices 4–7, and primary contacts between key residues and quinuclidine antagonists have been assigned based on CP-96,345 and its analogs. Analyses of the wild-type and mutant NK1 and NK2 receptors, intact and truncated peptides, and various antagonists suggest that the agonist and antagonist binding sites overlap spatially, even though agonists and antagonists do not interact with the same set of residues on the receptor. Mapping the ligand binding site not only allows us to better understand the ligand–receptor interaction and antagonism but also leads to a refined three-dimensional model of the NK1 receptor.Key words: receptor, substance P, agonist, antagonist, mutagenesis.


2020 ◽  
Author(s):  
Ivan Campeotto ◽  
Francis Galaway ◽  
Shahid Mehmood ◽  
Lea K. Barfod ◽  
Doris Quinkert ◽  
...  

AbstractPlasmodium falciparum RH5 is a secreted parasite ligand that is essential for erythrocyte invasion through direct interaction with the host erythrocyte receptor basigin. RH5 forms a tripartite complex with two other secreted parasite proteins: CyRPA and RIPR, and is tethered to the surface of the parasite through membrane-anchored P113. Antibodies against RH5, CyRPA and RIPR inhibit parasite invasion, suggesting that vaccines containing these three components have the potential to prevent blood-stage malaria. To further explore the role of the P113-RH5 interaction, we selected monoclonal antibodies against P113 that were either inhibitory or non-inhibitory for RH5 binding. Using a Fab fragment as a crystallisation chaperone, we determined the crystal structure of the RH5-binding region of P113 and showed that it is composed of two domains with structural similarities to rhamnose-binding lectins. We identified the RH5 binding site on P113 by using a combination of hydrogen-deuterium exchange mass spectrometry and site directed mutagenesis. We found that a monoclonal antibody to P113 that bound to this interface and inhibited the RH5-P113 interaction did not inhibit parasite blood-stage growth. These findings provide further structural information on the protein interactions of RH5 and will be helpful in the development of blood-stage malaria vaccines that target RH5.ImportanceMalaria is a deadly infectious disease primarily caused by the parasite Plasmodium falciparum. It remains a major global health problem and there is no highly effective vaccine. A parasite protein called RH5 is centrally involved in the invasion of host red blood cells, making it – and the other parasite proteins it interacts with – promising vaccine targets. We recently identified a protein called P113 that binds RH5 suggesting that it anchors RH5 to the parasite surface. In this paper, we use structural biology to locate and characterize the RH5 binding region on P113. These findings will be important to guide the development of new anti-malarial vaccines to ultimately prevent this disease which affects some of the poorest people on the planet.


2020 ◽  
Author(s):  
Luke Adams ◽  
Lorna E. Wilkinson-White ◽  
Menachem J. Gunzburg ◽  
Stephen J. Headey ◽  
Martin J. Scanlon ◽  
...  

The development of low-affinity fragment hits into higher affinity leads is a major hurdle in fragment-based drug design. Here we demonstrate an approach for the Rapid Elaboration of Fragments into Leads (REFiL) applying an integrated workflow that provides a systematic approach to generate higher-affinity binders without the need for structural information. The workflow involves the selection of commercial analogues of fragment hits to generate preliminary structure-activity relationships. This is followed by parallel microscale chemistry using chemoinformatically designed reagent libraries to rapidly explore chemical diversity. Upon completion of a fragment screen against Bromodomain-3 extra terminal (BRD3-ET) domain we applied the REFiL workflow, which allowed us to develop a series of tetrahydrocarbazole ligands that bind to the peptide binding site of BRD3-ET. With REFiL we were able to rapidly improve binding affinity >30-fold. The REFiL workflow can be applied readily to a broad range of protein targets without the need of a structure, allowing the efficient evolution of low-affinity fragments into higher affinity leads and chemical probes.<br>


1989 ◽  
Vol 264 (18) ◽  
pp. 10843-10850
Author(s):  
R E Baker ◽  
M Fitzgerald-Hayes ◽  
T C O'Brien

Sign in / Sign up

Export Citation Format

Share Document