Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly142 is critical for tetramerization of CTP synthase from Escherichia coli

2008 ◽  
Vol 412 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Faylene A. Lunn ◽  
Travis J. MacLeod ◽  
Stephen L. Bearne

CTPS (cytidine 5′-triphosphate synthase) catalyses the ATP-dependent formation of CTP from UTP using either ammonia or L-glutamine as the nitrogen source. Binding of the substrates ATP and UTP, or the product CTP, promotes oligomerization of CTPS from inactive dimers to active tetramers. In the present study, site-directed mutagenesis was used to replace the fully conserved glycine residues 142 and 143 within the UTP-binding site and 146 within the CTP-binding site of Escherchia coli CTPS. CD spectral analyses of wild-type CTPS and the glycine mutants showed a slight reduction of ∼15% in α-helical content for G142A and G143A relative to G146A and wild-type CTPS, suggesting some local alterations in structure. Relative to wild-type CTPS, the values of kcat/Km for ammonia-dependent and glutamine-dependent CTP formation catalysed by G143A were reduced 22- and 16-fold respectively, whereas the corresponding values for G146A were reduced only 1.4- and 1.8-fold respectively. The glutaminase activity (kcat) of G146A was similar to that exhibited by the wild-type enzyme, whereas that of G143A was reduced 7.5-fold. G146A exhibited substrate inhibition at high concentrations of ammonia and a partial uncoupling of glutamine hydrolysis from CTP production. Although the apparent affinity (1/[S]0.5) of G143A and G146A for UTP was reduced ∼4-fold, G146A exhibited increased co-operativity with respect to UTP. Thus mutations in the CTP-binding site can affect UTP-dependent activity. Surprisingly, G142A was inactive with both ammonia and glutamine as substrates. Gel-filtration HPLC experiments revealed that both G143A and G146A were able to form active tetramers in the presence of ATP and UTP; however, nucleotide-dependent tetramerization of G142A was significantly impaired. Our observations highlight the sensitivity of the structure of CTPS to mutations in the UTP- and CTP-binding sites, with Gly142 being critical for nucleotide-dependent oligomerization of CTPS to active tetramers. This ‘structural sensitivity’ may limit the number and/or types of mutations that could be selected for during the development of resistance to cytotoxic pyrimidine nucleotide analogues.

Microbiology ◽  
2003 ◽  
Vol 149 (6) ◽  
pp. 1559-1567 ◽  
Author(s):  
Eloísa Andújar ◽  
Eduardo Santero

The sequence of the extradiol dioxygenase ThnC, involved in tetralin biodegradation, was aligned with other extradiol dioxygenases involved in biodegradation of polycyclic compounds, and a three-dimensional model of ThnC, based on the structure of the previously crystallized 2,3-dihydroxybiphenyl dioxygenase from Burkholderia fungorum LB400, was built. In order to assess the functional importance of some non-active-site residues whose relevance could not be established by structural information, a number of positions surrounding the substrate-binding site were mutated in ThnC. Ten mutant proteins were purified and their activity towards 1,2-dihydroxytetralin, 1,2-dihydroxynaphthalene and 2,3-dihydroxybiphenyl was characterized. N213H, Q198H, G206M, A282R and A282G mutants increased k cat/K m at least twofold using 1,2-dihydroxytetralin as the substrate, thus showing that activity of ThnC is not maximized for this substrate. N213H and Q198H mutants increased k cat/K m using any of the substrates tested, thus showing the relevance for activity of these two histidines, which are highly conserved in dihydroxybiphenyl dioxygenases, but not present in dihydroxynaphthalene dioxygenases. Different substitutions in position 282 had different effects on general activity or substrate specificity, thus showing the functional importance of the most C-terminal β-sheet of the protein. A251M and G206M mutants showed increased activity specifically for a particular substrate. N213H, G206M, A282R, A282G and Y177I substitutions resulted in enzymes more tolerant to acidic pH, the most striking effect being observed in mutant Y177I, which showed maximal activity at pH 5·5. In addition, Q198D and V175D mutants, which had altered K m, also showed altered sensitivity to substrate inhibition, thus indicating that inhibition is exerted through the same binding site. This mutational analysis, therefore, identified conserved residues important for activity or substrate specificity, and also shed some light on the mechanism of substrate inhibition exhibited by extradiol dioxygenases.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Jiyong Su ◽  
Linlin Cui ◽  
Yunlong Si ◽  
Chenyang Song ◽  
Yuying Li ◽  
...  

Placental protein 13/galectin-13 (Gal-13) is highly expressed in placenta, where its lower expression is related to pre-eclampsia. Recently, the crystal structures of wild-type Gal-13 and its variant R53H at high resolution were solved. The crystallographic and biochemical results showed that Gal-13 and R53H could not bind lactose. Here, we used site-directed mutagenesis to re-engineer the ligand binding site of wild-type Gal-13, so that it could bind lactose. Of six newly engineered mutants, we were able to solve the crystal structures of four of them. Three variants (R53HH57R, R53HH57RD33G and R53HR55NH57RD33G had the same two mutations (R53 to H, and H57 to R) and were able to bind lactose in the crystal, indicating that these mutations were sufficient for recovering the ability of Gal-13 to bind lactose. Moreover, the structures of R53H and R53HR55N show that these variants could co-crystallize with a molecule of Tris. Surprisingly, although these variants, as well as wild-type Gal-13, could all induce hemagglutination, high concentrations of lactose could not inhibit agglutination, nor could they bind to lactose-modified Sepharose 6b beads. Overall, our results indicate that Gal-3 is not a normal galectin, which could not bind to β-galactosides. Lastly, the distribution of EGFP-tagged wild-type Gal-13 and its variants in HeLa cells showed that they are concentrated in the nucleus and could be co-localized within filamentary materials, possibly actin.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Roghayyeh Baghban ◽  
Safar Farajnia ◽  
Younes Ghasemi ◽  
Reyhaneh Hoseinpoor ◽  
Azam Safary ◽  
...  

Abstract Background Ocriplasmin (Jetrea) is using for the treatment of symptomatic vitreomacular adhesion. This enzyme undergoes rapid inactivation and limited activity duration as a result of its autolytic nature after injection within the eye. Moreover, the proteolytic activity can cause photoreceptor damage, which may result in visual impairment in more serious cases. Results The present research aimed to reduce the disadvantages of ocriplasmin using site-directed mutagenesis. To reduce the autolytic activity of ocriplasmin in the first variant, lysine 156 changed to glutamic acid and, in the second variant for the proteolytic activity reduction, alanine 59 mutated to threonine. The third variant contained both mutations. Expression of wild type and three mutant variants of ocriplasmin constructs were done in the Pichia pastoris expression system. The mutant variants were analyzed in silico and in vitro and compared to the wild type. The kinetic parameters of ocriplasmin variants showed both variants with K156E substitution were more resistant to autolytic degradation than wild-type. These variants also exhibited reduced Kcat and Vmax values. An increase in their Km values, leading to a decreased catalytic efficiency (the Kcat/Km ratio) of autolytic and mixed variants. Moreover, in the variant with A59T mutation, Kcat and Vmax values have reduced compared to wild type. The mix variants showed the most increase in Km value (almost 2-fold) as well as reduced enzymatic affinity to the substrate. Thus, the results indicated that combined mutations at the ocriplasmin sequence were more effective compared with single mutations. Conclusions The results indicated such variants represent valuable tools for the investigation of therapeutic strategies aiming at the non-surgical resolution of vitreomacular adhesion.


1997 ◽  
Vol 327 (3) ◽  
pp. 877-882 ◽  
Author(s):  
Junutula Reddy JAGATH ◽  
Naropantul APPAJI RAO ◽  
Handanahal SubbaRao SAVITHRI

In an attempt to identify the arginine residue involved in binding of the carboxylate group of serine to mammalian serine hydroxymethyltransferase, a highly conserved Arg-401 was mutated to Ala by site-directed mutagenesis. The mutant enzyme had a characteristic visible absorbance at 425 nm indicative of the presence of bound pyridoxal 5ʹ-phosphate as an internal aldimine with a lysine residue. However, it had only 0.003% of the catalytic activity of the wild-type enzyme. It was also unable to perform reactions with glycine, β-phenylserine or D-alanine, suggesting that the binding of these substrates to the mutant enzyme was affected. This was also evident from the interaction of amino-oxyacetic acid, which was very slow (8.4×10-4 s-1 at 50 μM) for the R401A mutant enzyme compared with the wild-type enzyme (44.6 s-1 at 50 μM). In contrast, methoxyamine (which lacks the carboxy group) reacted with the mutant enzyme (1.72 s-1 at 250 μM) more rapidly than the wild-type enzyme (0.2 s-1 at 250 μM). Further, both wild-type and the mutant enzymes were capable of forming unique quinonoid intermediates absorbing at 440 and 464 nm on interaction with thiosemicarbazide, which also does not have a carboxy group. These results implicate Arg-401 in the binding of the substrate carboxy group. In addition, gel-filtration profiles of the apoenzyme and the reconstituted holoenzyme of R401A and the wild-type enzyme showed that the mutant enzyme remained in a tetrameric form even when the cofactor had been removed. However, the wild-type enzyme underwent partial dissociation to a dimer, suggesting that the oligomeric structure was rendered more stable by the mutation of Arg-401. The increased stability of the mutant enzyme was also reflected in the higher apparent melting temperature (Tm) (61 °C) than that of the wild-type enzyme (56 °C). The addition of serine or serinamide did not change the apparent Tm of R401A mutant enzyme. These results suggest that the mutant enzyme might be in a permanently ‘open’ form and the increased apparent Tm could be due to enhanced subunit interactions.


Genetics ◽  
1994 ◽  
Vol 136 (4) ◽  
pp. 1355-1365 ◽  
Author(s):  
C Smith ◽  
H Giordano ◽  
R DeLotto

Abstract Two genes involved in the generation of dorsoventral asymmetry in the developing Drosophila melanogaster embryo, snake and easter, encode the zymogen form of serine proteases. Mutant alleles of snake were cloned and sequenced revealing two types of lesions: point mutations which alter the amino acid sequence (snk073 and snkrm4) and point mutations which alter the splicing (snk229 or snk233) of intron 1 of the mRNA from the normal 3' end of the intron to a cryptic site. snake mutant embryos derived from homozygous mothers can be fully rescued by injection of RNA transcripts of the wild-type snake cDNA. RNA phenotypic rescue and site-directed mutagenesis experiments indicate that snake requires the serine, histidine and aspartic acid of the catalytic triad for normal activity. Deletion experiments show that an acidic proenzyme domain is required for snake rescue activity to be uniformly distributed throughout the embryo. A second proenzyme domain, called the disulfide knot, appears to be essential for normal regulation of activity of the snake catalytic chain. Transcripts encoding only the proenzyme polypeptides of either snake or easter can dorsalize wild type embryos. We propose a model in which the proenzyme determinants of both the snake and easter enzymes mediate interaction between the serine proteases and other components of the dorsal-ventral patterning system.


1998 ◽  
Vol 72 (4) ◽  
pp. 3213-3220 ◽  
Author(s):  
Byeongwoon Song ◽  
C. S. H. Young

ABSTRACT Comparisons among sequences predicted to encode the major late promoter (MLP) of adenoviruses from a wide variety of host species show that an inverted CAAT box is among the most highly conserved transcription elements found in the putative MLPs. The high degree of conservation suggests that the CAAT box plays an important role in the function of the MLP in vivo, an idea supported by a previous mutational analysis of the core CCAAT sequence. To address the importance of the CAAT box, in terms both of quantitative levels of transcription and of specificity, a further set of mutations was created and examined in the context of the viral genome. One mutation, CAAT5, contains individual changes at five positions, four of which correspond to invariant residues in a CAAT box consensus derived either by computer analysis or empirically. The CAAT5 mutation had no discernible phenotype by itself but when coupled with the previously described USF0 mutation, which disrupts binding of the upstream stimulating factor (USF) but is otherwise phenotypically silent, gave rise to virus with a severe replication deficiency. Nuclear run-on assays showed that transcription initiation at the mutant MLP was significantly reduced compared with that of the wild type or the virus containing CAAT5 alone. Replication of the double mutant was lower than that of the previously described USF0::CCCAT virus, suggesting that the additional mutations in the CAAT box had further lowered the binding of transcription factor CP1 (also called CBF, NF-Y). Replacement of the CAAT box by an ATF binding site or an OCT1 binding site had no phenotypic effect in an otherwise wild-type background, but replacement in a USF0::CCCAT background led to only partial restoration of the wild-type phenotype. The failure to restore the functional redundancy normally exhibited by the CAAT box and the proximal upstream activating element is consistent with the idea that in the adenovirus MLP the CAAT box is preferred over others as the distal transcriptional element.


1995 ◽  
Vol 269 (2) ◽  
pp. C392-C402 ◽  
Author(s):  
D. Wang ◽  
D. F. Balkovetz ◽  
D. G. Warnock

The histidine-reactive reagent, diethyl pyrocarbonate (DEPC) inhibits the human amiloride-sensitive Na+/H+ exchanger (NHE1) in stably transfected fibroblasts. NHE1 was protected by cimetidine and amiloride from DEPC, and DEPC inhibition was reversed with hydroxylamine, suggesting a role for critical histidine groups in NHE activity. We replaced the histidines (H) in putative transmembrane domains (H35, H120, H349) with glycine (G) using site-directed mutagenesis. There was no significant change in NHE activity of the H120G; H349G; H120,349G; and H35,120,349G mutants compared with wild type. The 50% inhibition concentration values for amiloride, ethyl isopropyl amiloride (EIPA), and cimetidine of the H349G mutant were significantly increased compared with the wild-type NHE1. We also examined the DEPC effect on the transport activity of the triple histidine mutant (H35,120,349G) and found that NHE1 activity was still inhibited by DEPC with reversal by hydroxylamine and protected by amiloride and cimetidine. Kinetic analysis of DEPC inhibition indicated that two "critical" histidine residues are required for NHE transport activity. Substitutions of H349 with asparagine (N), glutamine (Q), serine (S), tyrosine (Y), valine (V), leucine (L), and phenylalanine (F) were also examined. There were no changes in NHE activity of these mutants compared with wild type. The H349G and H349L mutants became more resistant to amiloride, whereas the H349Y and H349F mutants became more sensitive to amiloride. The H349S (mimics NHE3) and H349Y (mimics NHE4) mutations had only modest effects on amiloride sensitivity. These results indicate that H349 affects the interaction of NHE1 with its inhibitors, even though substitutions at this site, per se, do not appear to explain the differences in amiloride sensitivity between different NHE isoforms. Despite clear-cut effects of the H349G mutation on the competitive interaction of NHE1 with cimetidine and EIPA, this mutation did not affect the affinity of NHE1 for its cationic substrates (Na+, Li+).


2003 ◽  
Vol 69 (9) ◽  
pp. 5627-5635 ◽  
Author(s):  
Rheinallt M. Jones ◽  
Peter A. Williams

ABSTRACT The areR gene in Acinetobacter sp. strain ADP1 regulates the expression of the areCBA genes, which determine growth on benzyl alkanoates. AreR is a member of the NtrC/XylR family of regulatory proteins as determined by sequence homology. Seventy-nine bases upstream of the start of transcription is a region carrying two overlapping inverted repeat (IR) sequences that we predict to be the AreR binding site, also known as the upstream activator site (UAS). IR1 is a near-perfect (16 of 17 bp) repeat separated by 1 bp, and IR2 consists of 9- and 7-bp perfect repeats with a 3-bp gap, with the central bases of the two arms of the repeat separated by 44 and 22 bp. We report here a method for site-directed mutagenesis of chromosomal genes in ADP1 in which linear fragments generated by overlap extension PCR are used to transform ADP1 via its natural transformation system and recombinants are selected by a marker exchange-eviction strategy with a newly created sacB-Km cassette. This method was used to generate 38 strains with designed mutations in the putative UAS upstream of areCBA. The effects of the mutations on areCBA expression were measured by enzyme assays of benzyl alcohol dehydrogenase (AreB) and by reporter gene assays of lacZ inserted into areA. Substitutions or deletions in IR1 had more deleterious effects upon expression when they were in its central region, which overlaps the left arm of IR2, than when they were in its outer regions. By contrast, substitutions in the right arm of IR2 resulted in mutants with relatively high expression levels compared to that of the wild type. Effects of deletions in the right arm of IR2 were very dependent upon the length of the deletion, with 3- or 5-bp deletions reducing expression by >90% whereas an 11-bp deletion in the same area reduced the expression levels by only 50%, suggesting that alterations in the distance and the orientation of the UAS relative to the −24, −12 σ54 promoter are critical.


1996 ◽  
Vol 317 (1) ◽  
pp. 141-145 ◽  
Author(s):  
Akiko HAMAHATA ◽  
Yoshimi TAKATA ◽  
Tomoharu GOMI ◽  
Motoji FUJIOKA

Most mammalian non-nucleic acid methyltransferases share three sequence motifs. To gain insight into the S-adenosylmethionine (AdoMet)-binding site of guanidinoacetate methyltransferase, we mutated several conserved residues that are found in or near motifs I and II. Conversion of either of two glycine residues of motif I (Gly67 and Gly69) to an alanine resulted in an inactive enzyme. These enzymes, although having UV absorption, fluorescence and far-UV CD spectra virtually identical with those of the wild-type enzyme, seem to be conformationally different from the wild-type enzyme as judged by near-UV CD spectra and the extent of urea denaturation, and are apparently not capable of binding AdoMet. Mutation of Tyr136 of motif II to a valine resulted in a decrease in kcat/Km values for substrates. Changing this residue to a phenylalanine caused only a minor change in kcat/Km for AdoMet. This suggests that the aromatic side chain stabilizes the binding of AdoMet. Mutagenic changes of Glu89, which is the residue corresponding to the conserved acidic residue on the C-terminal side of motif I, indicated its contribution to AdoMet binding. These results are consistent with the idea that both motifs I and II are crucial in forming the AdoMet binding site of guanidinoacetate methyltransferase.


Sign in / Sign up

Export Citation Format

Share Document