scholarly journals Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods

Microbiology ◽  
2004 ◽  
Vol 150 (8) ◽  
pp. 2565-2573 ◽  
Author(s):  
Xia Zhou ◽  
Stephen J. Bent ◽  
Maria G. Schneider ◽  
Catherine C. Davis ◽  
Mohammed R. Islam ◽  
...  

The normal microbial flora of the vagina plays an important role in preventing genital and urinary tract infections in women. Thus an accurate understanding of the composition and ecology of the ecosystem is important to understanding the aetiology of these diseases. Common wisdom is that lactobacilli dominate the normal vaginal microflora of post-pubertal women. However, this conclusion is based on methods that require cultivation of microbial populations; an approach that is known to yield a biased and incomplete assessment of microbial community structure. In this study cultivation-independent methods were used to analyse samples collected from the mid-vagina of five normal healthy Caucasian women between the ages of 28 and 44. Total microbial community DNA was isolated following resuspension of microbial cells from vaginal swabs. To identify the constituent numerically dominant populations in each community 16S rRNA gene libraries were prepared following PCR amplification using the 8f and 926r primers. From each library, the DNA sequences of approximately 200 16S rRNA clones were determined and subjected to phylogenetic analyses. The diversity and kinds of organisms that comprise the vaginal microbial community varied among women. Species of Lactobacillus appeared to dominate the communities in four of the five women. However, the community of one woman was dominated by Atopobium sp., whereas a second woman had appreciable numbers of Megasphaera sp., Atopobium sp. and Leptotrichia sp., none of which have previously been shown to be common members of the vaginal ecosystem. Of the women whose communities were dominated by lactobacilli, there were two distinct clusters, each of which consisted of a single species. One class consisted of two women with genetically divergent clones that were related to Lactobacillus crispatus, whereas the second group of two women had clones of Lactobacillus iners that were highly related to a single phylotype. These surprising results suggest that culture-independent methods can provide new insights into the diversity of bacterial species found in the human vagina, and this information could prove to be pivotal in understanding risk factors for various infectious diseases.

Author(s):  
Peng Wang ◽  
Yuxin Gao

Chakrabartia godavariana PRB40T was compared with Aestuariisphingobium litorale SYSU M10002T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of C. godavariana PRB40T had high similarity (99.8 %) to that of A. litorale SYSU M10002T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Chakrabartia . A draft genomic comparison between the two strains revealed an average nucleotide identity of 97.3 % and a digital DNA–DNA hybridization estimate of 79.5±2.9 %, strongly indicating that the two strains represented a single species. In addition, neither strain displayed any striking differences in metabolic, physiological or chemotaxonomic features. Therefore, we propose that Aestuariisphingobium litorale is a later heterotypic synonym of Chakrabartia godavariana .


Author(s):  
Yong Wu ◽  
Miaomiao Peng ◽  
Yuxin Gao ◽  
Jiahao Pei ◽  
Yan Zhang ◽  
...  

Nonomuraea nitratireducens WYY166T was compared with Nonomuraea phyllanthi PA1-10T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of N. nitratireducens WYY166T had high similarity (99.9 %) to that of N. phyllanthi PA1-10T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Nonomuraea . Draft genomic comparison between the two strains revealed an average nucleotide identity of 99.3 % and a digital DNA–DNA hybridization estimate of 94.4±1.8 %, strongly indicating that the two strains represented a single species. In addition, neither strain displayed any striking difference in metabolic, physiological or chemotaxonomic features. Therefore, we propose Nonomuraea nitratireducens as a later heterotypic synonym of Nonomuraea phyllanthi .


2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Toshitsugu Fujita ◽  
Daisuke Motooka ◽  
Hodaka Fujii

Abstract Oligoribonucleotide (ORN) interference-PCR (ORNi-PCR) is a method that suppresses PCR amplification of target DNA in an ORN-specific manner. In this study, we examined whether ORNi-PCR can be used to enrich desirable DNA sequences from a DNA mixture by suppressing undesirable DNA amplification. ORNi-PCR enriched edited DNA sequences from a mixture of genomic DNA subjected to genome editing. ORNi-PCR enabled more efficient analysis of the types of insertion/deletion mutations introduced by genome editing. In addition, ORNi-PCR reduced the detection of 16S ribosomal RNA (16S rRNA) genes in 16S rRNA gene-based microbiome profiling, which might permit a more detailed assessment of populations of other 16S rRNA genes. Enrichment of desirable DNA sequences by ORNi-PCR may be useful in molecular biology, medical diagnosis, and other fields.


Author(s):  
Yong Wu ◽  
Yuxin Gao ◽  
Jiasong Fang ◽  
Yuli Wei

Cellulomonas algicola KZ-21T was compared with Cellulomonas aurantiaca THG-SMD2.3T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of Cellulomonas algicola KZ-21T shared complete similarity (100.0 %) with that of Cellulomonas aurantiaca THG-SMD2.3T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Cellulomonas . Genome comparison between the two strains revealed an average nucleotide identity of 99.2 % and a digital DNA–DNA hybridization estimate of 93.7±1.8 %, strongly indicating that the two strains belong to a single species. In addition, neither strain displayed any striking differences in metabolic, physiological or chemotaxonomic features. Therefore, we propose Cellulomonas aurantiaca as a later heterotypic synonym of Cellulomonas algicola .


2021 ◽  
Author(s):  
Soohyun Maeng ◽  
Yuna Park ◽  
Tuvshinzaya Damdintogtokh ◽  
Hyejin Oh ◽  
Minji Bang ◽  
...  

Abstract Gram-stain-negative, aerobic, non-flagellated strains 172403-2T and BT310T were isolated from the soil collected in Pyeongchang city and Uijeongbu city, Korea. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strains 172403-2T and BT310T formed a distinct lineage within the family Hymenobacteraceae (order Chitinophagales, class Chitinophagia) and were most closely related to members of the genus Pontibacter, Pontibacter chitinilyticus 17gy-14T (95.7%), and Pontibacter populi HLY7-15T (97.1% 16S rRNA gene sequence similarity) respectively. The optimal growth of strains 172403-2T and BT310T occurred at pH 7.0, in the absence of NaCl, and 25°C and 30°C, respectively. The predominant cellular fatty acids were iso-C15:0 and summed feature 4 (iso-C17:1 I / anteiso-C17:1 B). The major respiratory quinone of the two strains was MK-7. The major polar lipid of the two strains was phosphatidylethanolamine. Biochemical, chemotaxonomic and phylogenetic analyses indicated that strains 172403-2T and BT310T represent novel bacterial species within the genus Pontibacter, for which the names Pontibacter rubellus and Pontibacter situs are proposed. The type strains of Pontibacter rubellus and Pontibacter situs are 172403-2T and BT310T, respectively.


ZooKeys ◽  
2020 ◽  
Vol 923 ◽  
pp. 115-140 ◽  
Author(s):  
Tao Luo ◽  
Ning Xiao ◽  
Kai Gao ◽  
Jiang Zhou

This study describes a new species of the genus Leptobrachella, Leptobrachella suiyangensissp. nov. from the Huoqiuba Nature Reserve, Suiyang County, Guizhou Province, China, based on morphological data and phylogenetic analyses (16S rRNA mtDNA). The new species can be distinguished from other congeners by the molecular divergence and by a combination of morphological characters, including body size, dorsal and ventral patterns, dorsal skin texture, size of the pectoral and femoral glands, degree of webbing and fringing on the toes and fingers, dorsum coloration, and iris coloration in life. Currently, the genus Leptobrachella contains 75 species, 21 of which are found in China, including seven species reported from Guizhou Province. The uncorrected sequence divergence percentage between Leptobrachella suiyangensissp. nov. and all homologous DNA sequences available for the 16S rRNA gene was found to be >4.7%. The new record of the species and its relationships with others in the same genus imply that species distribution, habitat variation, environmental adaptation, and diversity of the genus Leptobrachella in southwest China need to be further investigated.


2020 ◽  
Vol 24 (9) ◽  
pp. 4257-4273
Author(s):  
Yannick Colin ◽  
Rayan Bouchali ◽  
Laurence Marjolet ◽  
Romain Marti ◽  
Florian Vautrin ◽  
...  

Abstract. The invasion of aquifer microbial communities by aboveground microorganisms, a phenomenon known as community coalescence, is likely to be exacerbated in groundwaters fed by stormwater infiltration systems (SISs). Here, the incidence of this increased connectivity with upslope soils and impermeabilized surfaces was assessed through a meta-analysis of 16S rRNA gene libraries. Specifically, DNA sequences encoding 16S rRNA V5-V6 regions from free-living and attached aquifer bacteria (i.e., water and biofilm samples) were analysed upstream and downstream of a SIS and compared with those from bacterial communities from watershed runoffs and surface sediments from the SIS detention and infiltration basins. Significant bacterial transfers were inferred by the SourceTracker Bayesian approach, with 23 % to 57 % of the aquifer bacterial biofilms being composed of taxa from aboveground sediments and urban runoffs. Sediments from the detention basin were found more significant contributors of taxa involved in the buildup of these biofilms than soils from the infiltration basin. Inferred taxa among the coalesced biofilm community were predicted to be high in hydrocarbon degraders such as Sphingobium and Nocardia. The 16S rRNA-based bacterial community structure of the downstream-SIS aquifer waters showed lower coalescence with aboveground taxa (8 % to 38 %) than those of biofilms and higher numbers of taxa predicted to be involved in the N and S cycles. A DNA marker named tpm enabled the tracking of bacterial species from 24 genera including Pseudomonas, Aeromonas and Xanthomonas, among these communities. Several tpm sequence types were found to be shared between the aboveground and aquifer samples. Reads related to Pseudomonas were allocated to 50 species, of which 16 were found in the aquifer samples. Several of these aquifer species were found to be involved in denitrification but also hydrocarbon degradation (P. aeruginosa, P. putida and P. fluorescens). Some tpm sequence types allocated to P. umsongensis and P. chengduensis were found to be enriched among the tpm-harbouring bacteria, respectively, of the aquifer biofilms and waters. Reads related to Aeromonas were allocated to 11 species, but only those from A. caviae were recovered aboveground and in the aquifer samples. Some tpm sequence types of the X. axonopodis phytopathogen  were recorded in higher proportions among the tpm-harbouring bacteria of the aquifer waters than in the aboveground samples. A significant coalescence of microbial communities from an urban watershed with those of an aquifer was thus observed, and recent aquifer biofilms were found to be significantly colonized by runoff-opportunistic taxa able to use urban C sources from aboveground compartments.


2007 ◽  
Vol 57 (5) ◽  
pp. 916-922 ◽  
Author(s):  
Tomoo Sawabe ◽  
Yusuke Fujimura ◽  
Kentaro Niwa ◽  
Hideaki Aono

Nine alginolytic, facultatively anaerobic, non-motile bacteria were isolated from the guts of the abalones Haliotis discus discus, H. gigantea, H. madaka and H. rufescens. Phylogenetic analyses based on 16S rRNA gene sequences indicated that these bacteria were closely related to Vibrio superstes G3-29T (98.6–99.3 % sequence similarity). DNA–DNA hybridization and phylogenetic analysis based on the gapA gene demonstrated that six strains constituted one bacterial species, two strains represented a second species and one strain represented a third species. The three novel bacterial species were different from all currently known vibrios. The names Vibrio comitans sp. nov. (type strain GHG2-1T=LMG 23416T=NBRC 102076T; DNA G+C content 45.0–48.0 mol%), Vibrio inusitatus sp. nov. (type strain RW14T=LMG 23434T=NBRC 102082T; DNA G+C content 43.1–43.7 mol%) and Vibrio rarus sp. nov. (type strain RW22T=LMG 23674T=NBRC 102084T; DNA G+C content 43.8 mol%) are proposed to encompass these new taxa. Several phenotypic features were revealed that discriminate V. comitans, V. rarus and V. inusitatus from other Vibrio species.


Author(s):  
Jiahao Pei ◽  
Yong Wu ◽  
Yuxin Gao ◽  
Sicong Li ◽  
Jiasong Fang ◽  
...  

Hanstruepera crassostreae L53T was compared with Pseudobizionia ponticola MM-14T to examine the taxonomic relationship between the two type strains. The 16S rRNA gene sequence of H. crassostreae L53T had complete similarity (100.0%) to that of P. ponticola MM-14T. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that the two strains formed a tight cluster within the genus Pseudobizionia . Draft genomic comparison between the two strains revealed an average nucleotide identity of 96.9 % and a digital DNA–DNA hybridization estimate of 75.3±2.8 %, strongly indicating that the two strains represented a single species. In addition, neither strain displayed any striking difference in metabolic, physiological or chemotaxonomic features. Therefore, we propose that Hanstruepera crassostreae is a later heterotypic synonym of Pseudobizionia ponticola .


2014 ◽  
Vol 64 (Pt_3) ◽  
pp. 858-862 ◽  
Author(s):  
Linfang Wei ◽  
Shan Ouyang ◽  
Yao Wang ◽  
Xihui Shen ◽  
Lei Zhang

A Gram-staining-positive, strictly aerobic, rod-shaped, non-motile, non-spore-forming bacterial strain, designated GTGR-8T, which formed white colonies, was isolated from roots of Phytolacca acinosa Roxb. collected from Taibai Mountain in Shaanxi Province, north-west China. Strain GTGR-8T grew optimally at 28–30 °C, at pH 7.0–8.0 and in the absence of NaCl. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GTGR-8T was a member of the genus Solirubrobacter and was closely related to Solirubrobacter pauli B33D1T (98.9 % similarity), Solirubrobacter ginsenosidimutans BXN5-15T (97.0 %) and Solirubrobacter soli Gsoil 355T (96.9 %). No other recognized bacterial species showed more than 94.2 % 16S rRNA gene sequence similarity to the novel isolate. The only respiratory quinone of strain GTGR-8T was MK-7(H4) and the major fatty acids (>5 %) were iso-C16 : 0, C18 : 1ω9c, C17 : 1ω8c, C18 : 3ω6c (6,9,12) and C17 : 1ω6c. The DNA G+C content was 71.0 mol%. DNA–DNA relatedness for strain GTGR-8T with respect to its closest relatives, S. pauli KCTC 9974T and S. ginsenosidimutans KCTC 19420T, was 52.5 and 24.5 %, respectively. Based on phenotypic, phylogenetic and genotypic data, strain GTGR-8T is considered to represent a novel species in the genus Solirubrobacter , for which the name Solirubrobacter phytolaccae sp. nov. is proposed. The type strain is GTGR-8T ( = CCTCC AB 2013011T = KCTC 29190T).


Sign in / Sign up

Export Citation Format

Share Document