scholarly journals VimA is part of the maturation pathway for the major gingipains of Porphyromonas gingivalis W83

Microbiology ◽  
2006 ◽  
Vol 152 (11) ◽  
pp. 3383-3389 ◽  
Author(s):  
E. Vanterpool ◽  
F. Roy ◽  
W. Zhan ◽  
S. M. Sheets ◽  
L. Sangberg ◽  
...  

The authors have shown previously that the vimA gene, which is part of the bcp-recA-vimA operon, plays an important role in protease activation in Porphyromonas gingivalis. The gingipain RgpB proenzyme is secreted in the vimA-defective mutant P. gingivalis FLL92. An important question that is raised is whether the vimA gene product could directly interact with the proteases for their activation or regulate a pathway responsible for protease activation. To further study the mechanism(s) of VimA-dependent protease activation, the vimA gene product was further characterized. A 39 kDa protein consistent with the size of the predicted VimA protein was purified. In protein–protein interaction studies, the VimA protein was shown to interact with gingipains RgpA, RgpB and Kgp. Immune sera from mice immunized with P. gingivalis immunoreacted with the purified VimA protein. Taken together, these data suggest an interaction of VimA with the gingipains and further confirm the role of this protein in their regulation or maturation.

2012 ◽  
Vol 23 (4) ◽  
pp. 687-700 ◽  
Author(s):  
Ryohei Suzuki ◽  
Junko Y. Toshima ◽  
Jiro Toshima

Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein–protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain–containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.


2017 ◽  
Vol 8 (5) ◽  
pp. 903-912 ◽  
Author(s):  
Ainur Sharip ◽  
Diyora Abdukhakimova ◽  
Xiao Wang ◽  
Alexey Kim ◽  
Yevgeniy Kim ◽  
...  

2000 ◽  
Vol 350 (3) ◽  
pp. 741-746 ◽  
Author(s):  
Julian GRUSOVIN ◽  
Violet STOICHEVSKA ◽  
Keith H. GOUGH ◽  
Katrina NUNAN ◽  
Colin W. WARD ◽  
...  

munc18c is a critical protein involved in trafficking events associated with syntaxin 4 and which also mediates inhibitory effects on vesicle docking and/or fusion. To investigate the domains of munc18c responsible for its interaction with syntaxin 4, fragments of munc18c were generated and their interaction with syntaxin 4 examined in vivo by the yeast two-hybrid assay. In vitro protein–protein interaction studies were then used to confirm that the interaction between the proteins was direct. Full-length munc18c1–592, munc18c1–139 and munc18c1–225, but not munc18c226–592, munc18c1–100, munc18c43–139 or munc18c66–139, interacted with the cytoplasmic portion of syntaxin 4, Stx42–273, as assessed by yeast two-hybrid assay of growth on nutritionally deficient media and by β-galactosidase reporter induction. The N-terminal predicted helix-a-helix-b-helix-c region of syntaxin 4, Stx429–157, failed to interact with full-length munc18c1–592, indicating that a larger portion of syntaxin 4 is necessary for the interaction. The yeast two-hybrid results were confirmed by protein–protein interaction studies between Stx42–273 and glutathione S-transferase fusion proteins of munc18c. Full-length munc18c1–592, munc18c1–139 and munc18c1–225 interacted with Stx42–273 whereas munc18c1–100 did not, consistent with the yeast two-hybrid data. These data thus identify a region of munc18c between residues 1 and 139 as a minimal domain for its interaction with syntaxin 4.


2002 ◽  
Vol 46 (2) ◽  
pp. 190-196 ◽  
Author(s):  
Lin Jiang ◽  
Ying Gao ◽  
Fenglou Mao ◽  
Zhijie Liu ◽  
Luhua Lai

1984 ◽  
Vol 62 (8) ◽  
pp. 778-788 ◽  
Author(s):  
E. Sackmann ◽  
R. Kotulla ◽  
Franz-Josef Heiszler

The present paper deals with the curvature (or splay) elasticity of lipid bilayers and its possible consequences for the microscopic organization of membranes. Experimental studies of the microstructure of lipid–lipid and lipid–protein mixtures are reported and discussed in terms of this type of membrane elasticity. In particular, evidence is provided that the elastic distortion of lipid bilayers caused by the incorporation of proteins can lead to mechanisms of the indirect protein–protein interaction. Finally the question is discussed whether these mechanisms could also play a role for the formation of enzyme complexes in biological membranes.


Sign in / Sign up

Export Citation Format

Share Document