exon shuffling
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 6)

H-INDEX

28
(FIVE YEARS 1)

Author(s):  
Dan Zhang ◽  
Liang Leng ◽  
Chunyan Chen ◽  
Jiawei Huang ◽  
Yaqiong Zhang ◽  
...  

Author(s):  
Xiaoyue Cui ◽  
Maureen Stolzer ◽  
Dannie Durand

The exon shuffling theory posits that intronic recombination creates new domain combinations, facilitating the evolution of novel protein function. This theory predicts that introns will be preferentially situated near domain boundaries. Many studies have sought evidence for exon shuffling by testing the correspondence between introns and domain boundaries against chance intron positioning. Here, we present an empirical investigation of how the choice of null model influences significance. Although genome-wide studies have used a uniform null model, exclusively, more realistic null models have been proposed for single gene studies. We extended these models for genome-wide analyses and applied them to 21 metazoan and fungal genomes. Our results show that compared with the other two models, the uniform model does not recapitulate genuine exon lengths, dramatically underestimates the probability of chance agreement, and overestimates the significance of intron-domain correspondence by as much as 100 orders of magnitude. Model choice had much greater impact on the assessment of exon shuffling in fungal genomes than in metazoa, leading to different evolutionary conclusions in seven of the 16 fungal genomes tested. Genome-wide studies that use this overly permissive null model may exaggerate the importance of exon shuffling as a general mechanism of multidomain evolution.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 382
Author(s):  
Laszlo Patthy

Division of labor and establishment of the spatial pattern of different cell types of multicellular organisms require cell type-specific transcription factor modules that control cellular phenotypes and proteins that mediate the interactions of cells with other cells. Recent studies indicate that, although constituent protein domains of numerous components of the genetic toolkit of the multicellular body plan of Metazoa were present in the unicellular ancestor of animals, the repertoire of multidomain proteins that are indispensable for the arrangement of distinct body parts in a reproducible manner evolved only in Metazoa. We have shown that the majority of the multidomain proteins involved in cell–cell and cell–matrix interactions of Metazoa have been assembled by exon shuffling, but there is no evidence for a similar role of exon shuffling in the evolution of proteins of metazoan transcription factor modules. A possible explanation for this difference in the intracellular and intercellular toolkits is that evolution of the transcription factor modules preceded the burst of exon shuffling that led to the creation of the proteins controlling spatial patterning in Metazoa. This explanation is in harmony with the temporal-to-spatial transition hypothesis of multicellularity that proposes that cell differentiation may have predated spatial segregation of cell types in animal ancestors.


Science ◽  
2021 ◽  
Vol 371 (6531) ◽  
pp. eabc6405 ◽  
Author(s):  
Rachel L. Cosby ◽  
Julius Judd ◽  
Ruiling Zhang ◽  
Alan Zhong ◽  
Nathaniel Garry ◽  
...  

Genes with novel cellular functions may evolve through exon shuffling, which can assemble novel protein architectures. Here, we show that DNA transposons provide a recurrent supply of materials to assemble protein-coding genes through exon shuffling. We find that transposase domains have been captured—primarily via alternative splicing—to form fusion proteins at least 94 times independently over the course of ~350 million years of tetrapod evolution. We find an excess of transposase DNA binding domains fused to host regulatory domains, especially the Krüppel-associated box (KRAB) domain, and identify four independently evolved KRAB-transposase fusion proteins repressing gene expression in a sequence-specific fashion. The bat-specific KRABINER fusion protein binds its cognate transposons genome-wide and controls a network of genes and cis-regulatory elements. These results illustrate how a transcription factor and its binding sites can emerge.


2020 ◽  
Author(s):  
Rachel L. Cosby ◽  
Julius Judd ◽  
Ruiling Zhang ◽  
Alan Zhong ◽  
Nathaniel Garry ◽  
...  

AbstractHow genes with novel cellular functions evolve is a central biological question. Exon shuffling is one mechanism to assemble new protein architectures. Here we show that DNA transposons, which are mobile and pervasive in genomes, have provided a recurrent supply of exons and splice sites to assemble protein-coding genes in vertebrates via exon-shuffling. We find that transposase domains have been captured, primarily via alternative splicing, to form new fusion proteins at least 94 times independently over ∼350 million years of tetrapod evolution. Evolution favors fusion of transposase DNA-binding domains to host regulatory domains, especially the Krüppel-associated Box (KRAB), suggesting transposase capture frequently yields new transcriptional repressors. We show that four independently evolved KRAB-transposase fusion proteins repress gene expression in a sequence-specific fashion. Genetic knockout and rescue of the bat-specific KRABINER fusion gene in cells demonstrates that it binds its cognate transposons genome-wide and controls a vast network of genes and cis-regulatory elements. These results illustrate a powerful mechanism by which a transcription factor and its dispersed binding sites emerge at once from a transposon family.One Sentence SummaryHost-transposase fusion generates novel cellular genes, including deeply conserved and lineage specific transcription factors.


PLoS Genetics ◽  
2017 ◽  
Vol 13 (5) ◽  
pp. e1006795 ◽  
Author(s):  
Rebekah L. Rogers ◽  
Ling Shao ◽  
Kevin R. Thornton

Toxins ◽  
2016 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Xueli Wang ◽  
Bin Gao ◽  
Shunyi Zhu

Sign in / Sign up

Export Citation Format

Share Document