scholarly journals Bovine herpesvirus 5 encodes a unique pattern of microRNAs compared with bovine herpesvirus 1

2014 ◽  
Vol 95 (3) ◽  
pp. 671-678 ◽  
Author(s):  
Qi Tang ◽  
Yi-Quan Wu ◽  
Dong-Sheng Chen ◽  
Qing Zhou ◽  
Huan-Chun Chen ◽  
...  

Bovine herpesvirus type 5 (BoHV-5) and bovine herpesvirus 1 (BoHV-1) are two closely related viruses. However, BoHV-5 is responsible for fatal meningitis in calves, while BoHV-1 is associated with infectious rhinotracheitis in cattle, and the mechanism by which the two viruses cause different symptoms is not well understood. In this study, we identified 11 microRNA (miRNA) genes, encoded by the BoHV-5 genome, that were processed into 16 detectable mature miRNAs in productive infection as determined by deep sequencing. We found that 6 out of 16 miRNA genes were present as two copies in the internal repeat and terminal repeat regions, resulting in a total of 17 miRNA-encoding loci distributed in both DNA strands. Surprisingly, BoHV-5 shared only one conservative miRNA with BoHV-1, which was located upstream of the origin of replication. Furthermore, in contrast to BoHV-1, no miRNAs were detected in the unique short region and locus within or near the bovine infected-cell protein 0 and latency-related genes. Variations in both the 5′ and 3′ ends of the reference sequence were observed, resulting in more than one isoform for each miRNA. All of the 16 miRNAs were detectable by stem–loop reverse transcriptase-PCR. The miRNAs with high read numbers were subjected to Northern blot analysis, and all pre-miRNAs and one mature miRNA were detected. Collectively, the data suggest that BoHV-5 encodes a different pattern of miRNAs, which may regulate the life cycle of BoHV-5 and might account for the different pathogenesis of this virus compared with BoHV-1.

2005 ◽  
Vol 86 (10) ◽  
pp. 2697-2702 ◽  
Author(s):  
Gail Henderson ◽  
Yange Zhang ◽  
Clinton Jones

The infected cell protein 0 (bICP0) encoded by Bovine herpesvirus 1 (BHV-1) stimulates viral gene expression and productive infection. As bICP0 is expressed constitutively during productive infection, it is considered to be the major viral regulatory protein. Like other alphaherpesvirus ICP0 homologues, bICP0 contains a zinc RING finger near its N terminus that activates transcription and regulates subcellular localization. In this study, evidence is provided that bICP0 represses the human beta interferon (IFN-β) promoter and a simple promoter with consensus IFN-stimulated response elements following stimulation with double-stranded RNA (polyinosinic–polycytidylic acid), IFN regulatory factor 3 (IRF3) or IRF7. bICP0 also inhibits the ability of two protein kinases (TBK1 and IKKε) to activate IFN-β promoter activity. The zinc RING finger is necessary for inhibiting IFN-dependent transcription in certain cell types. Collectively, these studies suggest that bICP0 activates productive infection by stimulating viral gene expression and inhibiting IFN-dependent transcription.


2019 ◽  
Vol 94 (4) ◽  
Author(s):  
Fouad S. El-mayet ◽  
Laximan Sawant ◽  
Prasanth Thunuguntla ◽  
Jing Zhao ◽  
Clinton Jones

ABSTRACT An important site for bovine herpesvirus 1 (BoHV-1) latency is sensory neurons within trigeminal ganglia (TG). The synthetic corticosteroid dexamethasone consistently induces BoHV-1 reactivation from latency. Expression of four Krüppel-like transcription factors (KLF), i.e., KLF4, KLF6, PLZF (promyelocytic leukemia zinc finger), and KLF15, are induced in TG neurons early during dexamethasone-induced reactivation. The glucocorticoid receptor (GR) and KLF15 form a feed-forward transcription loop that cooperatively transactivates the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter that drives bovine infected cell protein 0 (bICP0) and bICP4 expression. Since the bICP0 gene also contains a separate early (E) promoter, we tested the hypothesis that GR and KLF family members transactivate the bICP0 E promoter. GR and KLF4, both pioneer transcription factors, cooperated to stimulate bICP0 E promoter activity in a ligand-independent manner in mouse neuroblastoma cells (Neuro-2A). Furthermore, GR and KLF4 stimulated productive infection. Mutating both half GR binding sites did not significantly reduce GR- and KLF4-mediated transactivation of the bICP0 E promoter, suggesting that a novel mechanism exists for transactivation. GR and KLF15 cooperatively stimulated bICP0 activity less efficiently than GR and KL4: however, KLF6, PLZF, and GR had little effect on the bICP0 E promoter. GR, KLF4, and KLF15 occupied bICP0 E promoter sequences in transfected Neuro-2A cells. GR and KLF15, but not KLF4, occupied the bICP0 E promoter at late times during productive infection of bovine cells. Collectively, these studies suggest that cooperative transactivation of the bICP0 E promoter by two pioneer transcription factors (GR and KLF4) correlates with stimulating lytic cycle viral gene expression following stressful stimuli. IMPORTANCE Bovine herpesvirus 1 (BoHV-1), an important bovine pathogen, establishes lifelong latency in sensory neurons. Reactivation from latency is consistently induced by the synthetic corticosteroid dexamethasone. We predict that increased corticosteroid levels activate the glucocorticoid receptor (GR). Consequently, viral gene expression is stimulated by the activated GR. The immediate early transcription unit 1 promoter (IEtu1) drives expression of two viral transcriptional regulatory proteins, bovine infected cell protein 0 (bICP0) and bICP4. Interestingly, a separate early promoter also drives bICP0 expression. Two pioneer transcription factors, GR and Krüppel-like transcription factor 4 (KLF4), cooperatively transactivate the bICP0 early (E) promoter. GR and KLF15 cooperate to stimulate bICP0 E promoter activity but significantly less than GR and KLF4. The bICP0 E promoter contains enhancer-like domains necessary for GR- and KLF4-mediated transactivation that are distinct from those for GR and KLF15. Stress-induced pioneer transcription factors are proposed to activate key viral promoters, including the bICP0 E promoter, during early stages of reactivation from latency.


2008 ◽  
Vol 82 (24) ◽  
pp. 12060-12068 ◽  
Author(s):  
Kazima Saira ◽  
Shafiqul Chowdhury ◽  
Natasha Gaudreault ◽  
Leticia da Silva ◽  
Gail Henderson ◽  
...  

ABSTRACT Bovine herpesvirus 1 (BHV-1) infected cell protein 0 (bICP0) stimulates productive infection, in part by activating viral gene expression. The C3HC4 zinc RING finger of bICP0 is crucial for activating viral transcription and productive infection. In this study, we used a bacterial artificial chromosome containing a wild-type (wt) virulent BHV-1 strain to generate a single amino acid mutation in the C3HC4 zinc RING finger of bICP0. This virus (the 51g mutant) contains a cysteine-to-glycine mutation (51st amino acid) in the C3HC4 zinc RING finger of bICP0. A plasmid expressing the 51g mutant protein did not transactivate viral promoter activity as efficiently as wt bICP0. The 51g mutant virus expressed higher levels of the bICP0 protein than did the 51g rescued virus (51gR) but yielded reduced virus titers following infection of permissive bovine cells. The 51g mutant virus, but not the 51gR virus, grew poorly in bovine cells pretreated with imiquimod to stimulate interferon production. During acute infection of calves, levels of infectious virus were 2 to 3 logs lower in ocular or nasal swabs with 51g than with 51gR. Calves latently infected with the 51g mutant did not reactivate from latency because virus shedding did not occur in ocular or nasal cavities. As expected, calves latently infected with 51gR reactivated from latency following dexamethasone treatment. These studies demonstrate that mutation of a single well-conserved cysteine residue in the C3HC4 zinc RING finger of bICP0 has dramatic effects on the growth properties of BHV-1.


2001 ◽  
Vol 75 (20) ◽  
pp. 9571-9578 ◽  
Author(s):  
Yange Zhang ◽  
Clinton Jones

ABSTRACT Infected-cell protein 0 encoded by bovine herpesvirus 1 (BHV-1) (bICP0) is necessary for efficient productive infection, in large part, because it activates all 3 classes of BHV-1 genes (U. V. Wirth, C. Fraefel, B. Vogt, C. Vlcek, V. Paces, and M. Schwyzer, J. Virol. 66:2763–2772, 1992). Although bICP0 is believed to be a functional homologue of herpes simplex virus type 1-encoded ICP0, the only well-conserved domain between the proteins is a zinc ring finger located near the amino terminus of both proteins. Our previous studies demonstrated that bICP0 is toxic to transfected cells but does not appear to directly induce apoptosis (Inman, M., Y. Zhang, V. Geiser, and C. Jones, J. Gen. Virol. 82:483–492, 2001). C-terminal sequences in the last 320 amino acids of bICP0 mediate subcellular localization. Mutagenesis of the zinc ring finger within bICP0 revealed that this domain was important for transcriptional activation. In this study, we demonstrate that bICP0 interacts with histone deacetylase 1 (HDAC1), which results in activation of a simple promoter containing four consensus Myc-Max binding sites. The interaction between bICP0 and HDAC1 correlated with inhibition of Mad-dependent transcriptional repression. In resting CV-1 cells, bICP0 relieved HDAC1-mediated transcriptional repression. The zinc ring finger was required for relieving HDAC1-induced repression but not for interacting with HDAC1. In fetal bovine lung cells but not in a human epithelial cell line, bICP0 expression correlated with reduced steady-state levels of HDAC1 in crude cytoplasmic extracts. We hypothesize that the ability of bICP0 to overcome HDAC1-induced repression plays a role in promoting productive infection in highly differentiated cell types.


2009 ◽  
Vol 83 (8) ◽  
pp. 3977-3981 ◽  
Author(s):  
Kazima Saira ◽  
You Zhou ◽  
Clinton Jones

ABSTRACT The bICP0 protein encoded by bovine herpesvirus 1 stimulates productive infection and viral gene expression but inhibits interferon (IFN)-dependent transcription. bICP0 inhibits beta IFN (IFN-β) promoter activity and induces degradation of IFN regulatory factor 3 (IRF3). Although bICP0 inhibits the trans-activation activity of IRF7, IRF7 protein levels are not reduced. In this study, we demonstrate that bICP0 is associated with IRF7. Furthermore, bICP0 inhibits the ability of IRF7 to trans-activate the IFN-β promoter in the absence of IRF3 expression. The interaction between bICP0 and IRF7 correlates with reduced trans-activation of the IFN-β promoter by IRF7.


2005 ◽  
Vol 86 (7) ◽  
pp. 1987-1996 ◽  
Author(s):  
V. Geiser ◽  
Y. Zhang ◽  
C. Jones

Bovine herpesvirus 1 (BHV-1) infected-cell protein 0 (bICP0) stimulates productive infection by activating viral gene expression. In this study, an attempt was made to construct a recombinant virus with point mutations in the C3HC4 zinc RING finger of bICP0, as this domain is necessary for activating viral transcription and productive infection. A virus was identified in bovine cells that induced small clusters of infected cells resembling a small plaque. Instead of the expected mutations within the zinc RING finger, this virus contained a point mutation within the initiating ATG of bICP0, a point mutation two bases downstream from the ATG mutation and deletion of flanking plasmid sequences used for homologous recombination. The bICP0 mutant was rescued with wild-type (wt) bICP0 sequences and the bICP0-rescued virus produced wt plaques. The bICP0-rescued virus and wt BHV-1, but not the mutant, expressed the bICP0 protein during productive infection of bovine cells, suggesting that the mutant virus was a null mutant. Consequently, the mutant was designated the bICP0 null mutant. Infection of bovine cells with the bICP0 null mutant resulted in at least 100-fold lower virus titres, indicating that bICP0 protein expression is important, but not required, for virus production. When bovine cells infected with the bICP0 null mutant virus were subcultured, the cells continued to divide, but viral DNA could be detected after more than 35 passages, suggesting that the bICP0 null mutant induced a persistent-like infection in bovine cells and that it may be useful for generating additional bICP0 mutants.


Author(s):  
Fouad S. El-Mayet ◽  
Kelly S. Harrison ◽  
Clinton Jones

Expression of Krüppel–like factor 15 (KLF15), a stress induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1 immediate early transcription unit 1 (IEtu1), herpes sim-plex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoter. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 ex-pression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection and KLF15 steady state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following in-fection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene and to a lesser extent bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 pro-moter activity. Collectively, these studies revealed HSV-1 and BoHV-1 productive infection in-creased KLF15 steady state protein levels, which correlated with increased virus production.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1148
Author(s):  
Fouad S. El-mayet ◽  
Kelly S. Harrison ◽  
Clinton Jones

Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production.


2011 ◽  
Vol 63 (4) ◽  
pp. 828-835 ◽  
Author(s):  
E.A. Costa ◽  
A.C. Vasconcelos ◽  
M.R.Q. Bomfim ◽  
H.B. Amorim ◽  
G.B.L. Lima ◽  
...  

A nested PCR assay was used to diagnose bovine encephalitis through herpesviruses including bovine herpesvirus 5 (BHV-5), bovine herpesvirus 1 (BHV-1), Aujeszky's disease virus (SHV-1), and ovine herpesvirus 2 (OHV-2) in 14 fragments of central nervous system (CNS) from cattle that died with neurological signs. In addition, as some samples of bovine herpesvirus type 4 (BHV-4) have been isolated from neural tissue, it was also tested by nested PCR. The cases of encephalitis occurred in isolation at different times of the year and did not present any seasonality. The duration of the clinical course ranged between 1 to 15 days, and in 64.3% of the cases it manifested between 1 to 2 days. The most frequently observed neurological signs were ataxia, recumbency, unsteadiness and inability to stand, opisthotonus, paddling movements, nystagmus and ptyalism. In the nested assay, there was no evidence of: BHV-1, SHV-1 or OHV-2 in the DNA obtained from the CNS in any of the samples. But the presence of BHV-4 was found in all fragments of the CNS in cattle which died presenting neurological signs. Moreover, BHV-5 was found in association with BHV-4 in two of these samples.


2018 ◽  
Vol 93 (1) ◽  
Author(s):  
Fouad S. El-mayet ◽  
Ayman S. El-Habbaa ◽  
Jean D’Offay ◽  
Clinton Jones

ABSTRACTBovine herpesvirus 1 (BoHV-1), including modified live vaccines, readily infects the fetus and ovaries, which can lead to reproductive failure. The BoHV-1 latency reactivation cycle in sensory neurons may further complicate reproductive failure in pregnant cows. The immediate early transcription unit 1 (IEtu1) promoter drives expression of important viral transcriptional regulators (bICP0 and bICP4). This promoter contains two functional glucocorticoid receptor (GR) response elements (GREs) that have the potential to stimulate productive infection following stressful stimuli. Since progesterone and the progesterone receptor (PR) can activate many GREs, we hypothesized that the PR and/or progesterone regulates productive infection and viral transcription. New studies demonstrated that progesterone stimulated productive infection. Additional studies revealed the PR and Krüppel-like transcription factor 15 (KLF15) cooperated to stimulate productive infection and IEtu1 promoter activity. IEtu1 promoter activation required both GREs, which correlated with the ability of the PR to interact with wild-type (wt) GREs but not mutant GREs. KLF15 also cooperated with the PR to transactivate the bICP0 early promoter, a promoter that maintains bICP0 protein expression during productive infection. Intergenic viral DNA fragments (less than 400 bp) containing two GREs and putative KLF binding sites present within genes encoding unique long 52 (UL-52; component of DNA primase/helicase complex), Circ, bICP4, and IEtu2 were stimulated by KLF15 and the PR more than 10-fold, suggesting that additional viral promoters are activated by these transcription factors. Collectively, these studies suggest progesterone and the PR promote BoHV-1 spread to reproductive tissues, thus increasing the incidence of reproductive failure.IMPORTANCEBovine herpesvirus 1 (BoHV-1) is the most frequently diagnosed cause of abortions in pregnant cows and can cause “abortion storms” in susceptible herds. Virulent field strains and even commercially available modified live vaccines can induce abortion, in part because BoHV-1 replicates efficiently in the ovary and corpus luteum. We now demonstrate that progesterone and the progesterone receptor (PR) stimulate productive infection. The BoHV-1 genome contains approximately 100 glucocorticoid receptor (GR) response elements (GREs). Interestingly, the PR can bind and activate many promoters that contain GREs. The PR and Krüppel-like transcription factor 15 (KLF15), which regulate key steps during embryo implantation, cooperate to stimulate productive infection and two viral promoters that drive expression of key viral transcriptional regulators. These studies suggest that the ability of progesterone and the PR to stimulate productive infection has the potential to promote virus spread in reproductive tissue and induce reproductive failure.


Sign in / Sign up

Export Citation Format

Share Document