scholarly journals Comparison of CR36, a new heparan mimetic, and pentosan polysulfate in the treatment of prion diseases

2007 ◽  
Vol 88 (3) ◽  
pp. 1062-1067 ◽  
Author(s):  
Claire Larramendy-Gozalo ◽  
Agnès Barret ◽  
Estelle Daudigeos ◽  
Emilie Mathieu ◽  
Lucie Antonangeli ◽  
...  

Sulfated polyanions, including pentosan polysulfate (PPS) and heparan mimetics, number among the most effective drugs that have been used in experimental models of prion disease and are presumed to act in competition with endogenous heparan sulfate proteoglycans as co-receptors for prion protein (PrP) on the cell surface. PPS has been shown to prolong the survival of animals after intracerebral perfusion and is in limited use for the experimental treatment of human transmissible spongiform encephalopathies (TSEs). Here, PPS is compared with CR36, a new heparan mimetic. Ex vivo, CR36 was more efficient than PPS in reducing PrPres in scrapie-infected cell cultures and showed long-lasting activity. In vivo, CR36 showed none of the acute toxicity observed with PPS and reduced PrPres accumulation in spleens, but had only a marginal effect on the survival time of mice infected with bovine spongiform encephalopathy. In contrast, mice treated with PPS that survived the initial toxic mortality had no detectable PrPres in the spleens and lived 185 days longer than controls (+55 %). These results show, once again, that anti-TSE drugs cannot be encouraged for human therapeutic trials solely on the basis of in vitro or ex vivo observations, but must first be subjected to in vivo animal studies.

2004 ◽  
Vol 76 (5) ◽  
pp. 915-920 ◽  
Author(s):  
P. P. Liberski

Transmissible spongiform encephalopathies (TSEs), currently known as prion diseases, are neurodegenerative disorders of the central nervous system (CNS) caused by an elusive infectious agent called “prion” (proteinaceous infectious particle). These dis orders include: kuru, Creutzfeldt –Jakob disease (CJD) and its variant (vCJD), Gerstmann–Sträussler–Scheinker (GSS) disease and fatal familial insomnia (FFI) in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, and chronic wasting disease (CWD) in cervids. According to the widely accepted “prion hypothesis”, prion is an aggregate of the abnormal isoform of prion protein (PrPSc). Prion protein is a cell-derived glycoprotein (this normal isoform is called PrPc) encoded by a gene on chromosome 20 in humans (PRNP). In familial forms of TSEs, mutations within the ORF of PRNP are linked to the phenotypic expression of the disease. TSEs are important from public health perspective, and “mad cow disease has created the greatest threat to the safety of human food supply in modern times. vCJD threatens the safety of the blood supply worldwide”. Thus, to search for effective therapy is more than an urgent task. In TSEs, aggregates of PrPSc accumulate in the brain in a form of plaques, or synaptic deposits. The conversion of PrPc into PrPSc and subsequent deposits of PrPSc are targets for therapeutic interventions. These include: tricyclic compounds—acridine and phenothiazine derivatives; quinacrine; anti-PrPSc antibodies; dendrimers; polyethylene antibiotics (amphotericin B, MS-8209); pentosan polysulfate; and dextran sulfate. All these compounds are active in many in vitro and in vivo assays, but not proved definitely active in humans. Thus, albeit interesting and promising, the chemotherapy of TSEs is still in the infant phase.


2007 ◽  
Vol 81 (24) ◽  
pp. 13794-13800 ◽  
Author(s):  
Sabrina Cronier ◽  
Vincent Beringue ◽  
Anne Bellon ◽  
Jean-Michel Peyrin ◽  
Hubert Laude

ABSTRACT Transmissible spongiform encephalopathies (TSE) arise as a consequence of infection of the central nervous system by prions and are incurable. To date, most antiprion compounds identified by in vitro screening failed to exhibit therapeutic activity in animals, thus calling for new assays that could more accurately predict their in vivo potency. Primary nerve cell cultures are routinely used to assess neurotoxicity of chemical compounds. Here, we report that prion strains from different species can propagate in primary neuronal cultures derived from transgenic mouse lines overexpressing ovine, murine, hamster, or human prion protein. Using this newly developed cell system, the activity of three generic compounds known to cure prion-infected cell lines was evaluated. We show that the antiprion activity observed in neuronal cultures is species or strain dependent and recapitulates to some extent the activity reported in vivo in rodent models. Therefore, infected primary neuronal cultures may be a relevant system in which to investigate the efficacy and mode of action of antiprion drugs, including toward human transmissible spongiform encephalopathy agents.


2002 ◽  
Vol 83 (1) ◽  
pp. 267-271 ◽  
Author(s):  
Fang-Ping Huang ◽  
Christine F. Farquhar ◽  
Neil A. Mabbott ◽  
Moira E. Bruce ◽  
G. Gordon MacPherson

Bovine spongiform encephalopathy, variant Creutzfeldt–Jakob disease (vCJD) and possibly also sheep scrapie are orally acquired transmissible spongiform encephalopathies (TSEs). TSE agents usually replicate in lymphoid tissues before they spread into the central nervous system. In mouse TSE models PrPc-expressing follicular dendritic cells (FDCs) resident in lymphoid germinal centres are essential for replication, and in their absence neuroinvasion is impaired. Disease-associated forms of PrP (PrPSc), a biochemical marker for TSE infection, also accumulate on FDCs in the lymphoid tissues of patients with vCJD and sheep with natural scrapie. TSE transport mechanisms between gut lumen and germinal centres are unknown. Migratory bone marrow-derived dendritic cells (DCs), entering the intestinal wall from blood, sample antigens from the gut lumen and carry them to mesenteric lymph nodes. Here we show that DCs acquire PrPSc in vitro, and transport intestinally administered PrPSc directly into lymphoid tissues in vivo. These studies suggest that DCs are a cellular bridge between the gut lumen and the lymphoid TSE replicative machinery.


Parasitologia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 50-60
Author(s):  
Veronica Rodriguez Fernandez ◽  
Giovanni Casini ◽  
Fabrizio Bruschi

Ocular toxoplasmosis (OT) is caused by the parasite Toxoplasma gondii and affects many individuals throughout the world. Infection may occur through congenital or acquired routes. The parasites enter the blood circulation and reach both the retina and the retinal pigment epithelium, where they may cause cell damage and cell death. Different routes of access are used by T. gondii to reach the retina through the retinal endothelium: by transmission inside leukocytes, as free parasites through a paracellular route, or after endothelial cell infection. A main feature of OT is the induction of an important inflammatory state, and the course of infection has been shown to be influenced by the host immunogenetics. On the other hand, there is evidence that the T. gondii phenotype also has an impact on the distribution of the pathology in different areas. Although considerable knowledge has been acquired on OT, a deeper knowledge of its mechanisms is necessary to provide new, more targeted treatment strategies. In particular, in addition to in vitro and in vivo experimental models, organotypic, ex vivo retinal explants may be useful in this direction.


1996 ◽  
Vol 17 (8) ◽  
pp. 521-528
Author(s):  
Dominique Dormont

AbstractTransmissible spongiform encephalopathies are rare lethal diseases induced in humans and animals by unconventional agents called transmissible spongiform encephalopathy agents (TSEAs), virions, or prions. Several cases of iatrogenic Creutzfeldt-Jakob disease (CJD) have been reported in the literature after neuro-surgery, treatment with pituitary-derived hormones, corneal grafting, and use of dura mater lyophilisates. In a given infected individual, TSEA-associated infectiousness depends on the nature of the organ: the central nervous system has the highest infectiousness, spleen and lymph nodes a medium infectiousness, and organs such as bone, skin, or skeletal muscles do not harbor any detectable infectiousness in experimental models. Transmissible spongiform encephalopathy/prions have unconventional properties; in particular, they resist almost all the chemical and physical processes that inactivate conventional viruses. Therefore, prevention of CJD agent transmission must be taken into account in daily hospital practice. Efficient sterilization procedures should be determined. In tissue and blood donation, donors with a neurologic history must be excluded, and patients treated with pituitary-derived hormones should be considered potentially infected with TSEA and excluded.


mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Christina D. Orrú ◽  
Jason M. Wilham ◽  
Lynne D. Raymond ◽  
Franziska Kuhn ◽  
Björn Schroeder ◽  
...  

ABSTRACT A key challenge in managing transmissible spongiform encephalopathies (TSEs) or prion diseases in medicine, agriculture, and wildlife biology is the development of practical tests for prions that are at or below infectious levels. Of particular interest are tests capable of detecting prions in blood components such as plasma, but blood typically has extremely low prion concentrations and contains inhibitors of the most sensitive prion tests. One of the latter tests is quaking-induced conversion (QuIC), which can be as sensitive as in vivo bioassays, but much more rapid, higher throughput, and less expensive. Now we have integrated antibody 15B3-based immunoprecipitation with QuIC reactions to increase sensitivity and isolate prions from inhibitors such as those in plasma samples. Coupling of immunoprecipitation and an improved real-time QuIC reaction dramatically enhanced detection of variant Creutzfeldt-Jakob disease (vCJD) brain tissue diluted into human plasma. Dilutions of 1014-fold, containing ~2 attogram (ag) per ml of proteinase K-resistant prion protein, were readily detected, indicating ~10,000-fold greater sensitivity for vCJD brain than has previously been reported. We also discriminated between plasma and serum samples from scrapie-infected and uninfected hamsters, even in early preclinical stages. This combined assay, which we call “enhanced QuIC” (eQuIC), markedly improves prospects for routine detection of low levels of prions in tissues, fluids, or environmental samples. IMPORTANCE Transmissible spongiform encephalopathies (TSEs) are largely untreatable and are difficult to diagnose definitively prior to irreversible clinical decline or death. The transmissibility of TSEs within and between species highlights the need for practical tests for even the smallest amounts of infectivity. A few sufficiently sensitive in vitro methods have been reported, but most have major limitations that would preclude their use in routine diagnostic or screening applications. Our new assay improves the outlook for such critical applications. We focused initially on blood plasma because a practical blood test for prions would be especially valuable for TSE diagnostics and risk reduction. Variant Creutzfeldt-Jakob disease (vCJD) in particular has been transmitted between humans via blood transfusions. Enhanced real-time quaking-induced conversion (eRTQ) provides by far the most sensitive detection of vCJD to date. The 15B3 antibody binds prions of multiple species, suggesting that our assay may be useful for clinical and fundamental studies of a variety of TSEs of humans and animals.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Alessio Cardinale ◽  
Silvia Biocca

Prion diseases or transmissible spongiform encephalopathies (TSE) are a group of neurodegenerative and infectious disorders characterized by the conversion of a normal cellular protein PrPCinto a pathological abnormally folded form, termed PrPSc. There are neither available therapies nor diagnostic tools for an early identification of individuals affected by these diseases. New gene-based antibody strategies are emerging as valuable therapeutic tools. Among these, intrabodies are chimeric molecules composed by recombinant antibody fragments fused to intracellular trafficking sequences, aimed at inhibiting,in vivo, the function of specific therapeutic targets. The advantage of intrabodies is that they can be selected against a precise epitope of target proteins, including protein-protein interaction sites and cytotoxic conformers (i.e., oligomeric and fibrillar assemblies). Herein, we address and discussin vitroandin vivoapplications of intrabodies in prion diseases, focussing on their therapeutic potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Belén Marín ◽  
Alicia Otero ◽  
Séverine Lugan ◽  
Juan Carlos Espinosa ◽  
Alba Marín-Moreno ◽  
...  

AbstractPigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8–9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.


2011 ◽  
Vol 22 (17) ◽  
pp. 3041-3054 ◽  
Author(s):  
Patricia Carulla ◽  
Ana Bribián ◽  
Alejandra Rangel ◽  
Rosalina Gavín ◽  
Isidro Ferrer ◽  
...  

Cellular prion protein (PrPC) is a glycosyl-phosphatidylinositol–anchored glycoprotein. When mutated or misfolded, the pathogenic form (PrPSC) induces transmissible spongiform encephalopathies. In contrast, PrPC has a number of physiological functions in several neural processes. Several lines of evidence implicate PrPC in synaptic transmission and neuroprotection since its absence results in an increase in neuronal excitability and enhanced excitotoxicity in vitro and in vivo. Furthermore, PrPC has been implicated in the inhibition of N-methyl-d-aspartic acid (NMDA)–mediated neurotransmission, and prion protein gene (Prnp) knockout mice show enhanced neuronal death in response to NMDA and kainate (KA). In this study, we demonstrate that neurotoxicity induced by KA in Prnp knockout mice depends on the c-Jun N-terminal kinase 3 (JNK3) pathway since Prnpo/oJnk3o/o mice were not affected by KA. Pharmacological blockage of JNK3 activity impaired PrPC-dependent neurotoxicity. Furthermore, our results indicate that JNK3 activation depends on the interaction of PrPC with postsynaptic density 95 protein (PSD-95) and glutamate receptor 6/7 (GluR6/7). Indeed, GluR6–PSD-95 interaction after KA injections was favored by the absence of PrPC. Finally, neurotoxicity in Prnp knockout mice was reversed by an AMPA/KA inhibitor (6,7-dinitroquinoxaline-2,3-dione) and the GluR6 antagonist NS-102. We conclude that the protection afforded by PrPC against KA is due to its ability to modulate GluR6/7-mediated neurotransmission and hence JNK3 activation.


Sign in / Sign up

Export Citation Format

Share Document