scholarly journals mRNA-Expression of ERα, ERβ, and PR in Clonal Stem Cell Cultures Obtained from Human Endometrial Biopsies

2011 ◽  
Vol 11 ◽  
pp. 1762-1769 ◽  
Author(s):  
A. N. Schüring ◽  
J. Braun ◽  
S. Wüllner ◽  
L. Kiesel ◽  
M. Götte

Background. Proliferation and differentiation of the endometrium are regulated by estrogen and progesterone. The enormous regenerative capacity of the endometrium is thought to be based on the activity of adult stem cells. However, information on endocrine regulatory mechanisms in human endometrial stem cells is scarce. In the present study, we investigated the expression of ERα, ERβ, and PR in clonal cultures of human endometrial stem cells derived from transcervical biopsies.Methods. Endometrial tissue of 11 patients was obtained by transcervical biopsy. Stromal cell suspensions were plated at clonal density and incubated for 15 days. Expression of ERα, ERβand PR was determined by qPCR prior to and after one cloning round, and normalized to 18 S rRNA expression.Results. Expression of ERαand ERβwas downregulated by 64% and 89%, respectively ( and ). In contrast, PR was not significantly downregulated, due to a more heterogenous expression pattern.Conclusions. Culture of human endometrial stroma cells results in a downregulation of ERαand ERβ, while expression of PR remained unchanged in our patient collective. These results support the hypothesis that stem cells may not be subject to direct stimulation by sex steroids, but rather by paracrine mechanisms within the stem cell niche.

2011 ◽  
pp. 35-55 ◽  
Author(s):  
Yoshiko Matsumoto ◽  
Hiroko Iwasaki ◽  
Toshio Suda

2017 ◽  
Author(s):  
Wei Dai ◽  
Amy Peterson ◽  
Thomas Kenney ◽  
Denise J. Montell

AbstractAdult stem cells commonly give rise to transit-amplifying progenitors, whose progeny differentiate into distinct cell types. Signals within the stem cell niche maintain the undifferentiated state. However it is unclear whether or how niche signals might also coordinate fate decisions within the progenitor pool. Here we use quantitative microscopy to elucidate distinct roles for Wnt, Hedgehog (Hh), and Notch signalling in progenitor development in the Drosophila ovary. Follicle stem cells (FSCs) self-renew and produce precursors whose progeny adopt distinct polar, stalk, and main body cell fates. We show that a steep gradient of Wnt signalling maintains a multipotent state in proximally located progenitor cells by inhibiting expression of the cell fate determinant Eyes Absent (Eya). A shallower gradient of Hh signalling controls the proliferation to differentiation transition. The combination of Notch and Wnt signalling specifies polar cells. These findings reveal a mechanism by which multiple niche signals coordinate cell fate diversification of progenitor cells.


2020 ◽  
Vol 71 (2) ◽  
pp. 211-213
Author(s):  
K. Sato ◽  
S. Chitose ◽  
K. Sato ◽  
F. Sato ◽  
T. Kurita ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 3-13
Author(s):  
Lang Wang ◽  
Yong Li ◽  
Maorui Zhang ◽  
Kui Huang ◽  
Shuanglin Peng ◽  
...  

Adipose-derived stem cells are adult stem cells which are easy to obtain and multi-potent. Stem-cell therapy has become a promising new treatment for many diseases, and plays an increasingly important role in the field of tissue repair, regeneration and reconstruction. The physicochemical properties of the extracellular microenvironment contribute to the regulation of the fate of stem cells. Nanomaterials have stable particle size, large specific surface area and good biocompatibility, which has led them being recognized as having broad application prospects in the field of biomedicine. In this paper, we review recent developments of nanomaterials in adipose-derived stem cell research. Taken together, the current literature indicates that nanomaterials can regulate the proliferation and differentiation of adipose-derived stem cells. However, the properties and regulatory effects of nanomaterials can vary widely depending on their composition. This review aims to provide a comprehensive guide for future stem-cell research on the use of nanomaterials.


2008 ◽  
Vol 8 ◽  
pp. 1168-1176 ◽  
Author(s):  
Laren Becker ◽  
Qin Huang ◽  
Hiroshi Mashimo

Lgr5 has recently been identified as a murine marker of intestinal stem cells. Its expression has not been well characterized in human gastrointestinal tissues, but has been reported in certain cancers. With the increasing appreciation for the role of cancer stem cells or tumor-initiating cells in certain tumors, we sought to explore the expression of Lgr5 in normal and premalignant human gastrointestinal tissues. Using standard immunostaining, we compared expression of Lgr5 in normal colon and small intestine vs. small intestinal and colonic adenomas and Barrett's esophagus. In the normal tissue, Lgr5 was expressed in the expected stem cell niche, at the base of crypts, as seen in mice. However, in premalignant lesions, Lgr5+cells were not restricted to the crypt base. Additionally, their overall numbers were increased. In colonic adenomas, Lgr5+cells were commonly found clustered at the luminal surface and rarely at the crypt base. Finally, we compared immunostaining of Lgr5 with that of CD133, a previously characterized marker for tumor-initiating cells in colon cancer, and found that they identified distinct subpopulations of cells that were in close proximity, but did not costain. Our findings suggest that (1) Lgr5 is a potential marker of intestinal stem cells in humans and (2) loss of restriction to the stem cell niche is an early event in the premalignant transformation of stem cells and may play a role in carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document