scholarly journals Simple Reversed-Phase HPLC Method with Spectrophotometric Detection for Measuring Acetaminophen-Protein Adducts in Rat Liver Samples

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Miteshkumar Acharya ◽  
Cesar A. Lau-Cam

A simple reversed-phase HPLC method for measuring hepatic levels of acetaminophen- (APAP-) protein adduct following an overdose of APAP was developed. An aliquot of liver homogenate in phosphate-buffered saline pH 7.4 (PBS) was placed on a Nanosep centrifugal device, which was centrifuged to obtain a protein residue. This residue was incubated with a solution ofp-aminobenzoic acid (PABA), the internal standard, and bacterial protease in PBS, transferred to a Nanosep centrifugal device, and centrifuged. A 100 μL portion of the filtrate was analyzed on a YMC-Pack ODS-AMQ C18 column, using 100 mM potassium dihydrogen phosphate-methanol-acetic acid (100 : 0.6 : 0.1) as the mobile phase, a flow rate of 1 mL/min, and photometric detection at 254 nm. PABA and APAP-cystein-S-yl (APAP-Cys) eluted at~14.7 min and 22.7 min, respectively. Method linearity, based on on-column concentrations of APAP-Cys, was observed over the range 0.078–40 μg. Recoveries of APAP-Cys from spiked blank liver homogenates ranged from~83% to 91%. Limits of detection and of quantification of APAP-Cys, based on column concentrations, were 0.06 μg and 0.14 μg, respectively. RSD values for interday and intraday analyses of a blank liver homogenate spiked with APAP-Cyst at three levels were, in all cases, ≤1.0% and <1.5%, respectively. The proposed method was found appropriate for comparing the antidotal properties of N-acetylcysteine and taurine in a rat model of APAP poisoning.

2021 ◽  
pp. 281-294 ◽  
Author(s):  
Abolghasem Beheshti ◽  
Zahra Kamalzadeha ◽  
Monireh Haj-Maleka ◽  
Meghdad Payaba ◽  
Mohammad Amin Rezvanfar ◽  
...  

Due to the new hopes for treatment of multiple sclerosis (MS) diseases by Teriflunomide (TFN), in this project, a cheap, robust, and fully validated method has been developed both for determination of assay content in API (active pharmaceutical ingredient), and for related impurities analysis (RIA). To operate the method, a common C18, end-capped (250 × 4.6) mm, 5µm liquid chromatography column, was applied. The mobile phase A was prepared by dissolving 2.74 g (20mM) of PDP (potassium dihydrogen phosphate) and 3.72 g (50mM) of PC (potassium chloride) in water (1000 mL). Then, pH was adjusted to 3.0 by adding OPA (ortho-phosphoric acid) 85%; while, the mobile phase B was acetonitrile (ACN) (100%). In order to confirm the experimental data about the λmax of TFN, we have used the Born-Oppenheimer molecular dynamics (BOMD) simulations, quantum mechanics (QM), and TD-DFT calculations. According to the results, the method showed a high level of suitability, specificity, linearity, accuracy, precision, repeatability, robustness, and reliable detection limit.


2014 ◽  
Vol 20 (1) ◽  
pp. 109-114
Author(s):  
Kulandaivelu Karunakaran ◽  
Gurusamy Navaneethan ◽  
Kuppanagounder Pitchaimuthu

A new method for the simultaneous determination of paracetamol (PR) and lornoxicam (LR) has been developed by reversed phase HPLC from the combination drug product. The separation achieved on C18 column using acetonitrile and 0.02 M potassium dihydrogen phosphate was in the ratio of 35:65 (v/v) as mobile phase at a flow rate of 1.0 mL/min. Both the components were monitored at a single wavelength at 260 nm and the column temperature was maintained at 30?C throughout the analysis. A linear response was found in the concentration range of 125-375 ?g/mL for PR and 2-6 ?g/mL for LR, with the correlation coefficient of more than 0.999. Although the tablet contained a high dose of PR (500 mg) and a low dose of LR (8 mg), the single HPLC method was developed and the intra as well as inter day precision was obtained at less than 2% of RSD. The accuracy results obtained were between 98% and 102%. The drug was intentionally degraded under acidic, basic, peroxide, thermal, and photolytic conditions. The major degradation observed for both PR and LR under peroxide condition indicated that the drug product is susceptible to oxidation. The degraded peaks were properly resolved from PR and LR. Hence, the method is stability indicating.


Author(s):  
Adebanjo J. Adegbola ◽  
Julius O. Soyinka

Malaria has been shown to strongly predispose patients in areas of malaria endemicity to bacteremia with severe outcomes, thus justifying the use of antibiotics in combination with antimalarial therapy in patients with severe malaria. This study describes a High-Performance Liquid Chromatographic (HPLC) method for simultaneous determinations of Ciprofloxacin (CPN), Quinine (QN), and its major metabolite, 3-Hydroxyquinine (3-HQN), in human plasma. Following a simple precipitation with acetonitrile, chromatographic separation was achieved on a reversed-phase Agilent Zorbax (CN) column (5 μm, 150 X 4.6 mm i.d) using a mobile phase consisting of acetonitrile: potassium dihydrogen phosphate (pH = 2.8; 0.02 M) (42:58, v/v). Retention times for CPN, 3-HQN, IS and QN were 2.7, 3.3, 3.6 and 4.9 minutes respectively. The limits of detection and validated lower limits of quantitation were 30 and 70 ng/ml for both QN and 3-HQN while the corresponding values were 50 and 100 ng/ml for CPN, respectively. The new HPLC method here developed, when compared with previous methods for the analysis of either or both drugs is simple, rapid, selective, reproducible and costeffective. It is also suitable for conducting a simultaneous therapeutic monitoring of quinine and ciprofloxacin in patients when concomittantly administered as demonstrated in five healthy volunteers.


2004 ◽  
Vol 1 (1) ◽  
pp. 38-42
Author(s):  
Y. S. R. Krishnaiah ◽  
V. Satyanarayana ◽  
P. Bhaskar

A sensitive high-performance liquid chromatographic method was developed for the estimation of nicardipine hydrochloride in human plasma. Varying amount of nicardipine hydrochloride (2.5 to 150 ng/0.5 mL) and fixed quantity (100 ng/0.5 mL) of nifedipine (internal standard) was added to blank human plasma, and a single step extraction was carried out with ethyl acetate. The mixture was centrifuged, ethyl acetate layer separated, dried and reconstituted with 100 μL of acetonitrile. Twenty microliters of this solution was injected into a reverse phase C-18 column using a mobile phase consisting of acetonitrile: 0.02 M potassium dihydrogen phosphate (pH 4.0) in the ratio of 60:40 v/v and the eluents were monitored at 239 nm. The method was validated for its linearity, precision and accuracy. The calibration curve was linear in the range of 5-150 ng/0.5 mL of plasma and the lower detection limit was 2.5 ng/0.5 mL of plasma. The intra- and inter-day variation was found to be less than 2.5% indicating that the method is highly precise. The mean recovery of nicardipine hydrochloride from plasma samples was 89.6±2.60%. The proposed HPLC method was applied for the estimation of nicardipine hydrochloride in human plasma after oral administration of an immediate release nicardipine hydrochloride capsule (dose 30 mg) to 6 adult male volunteers. There was no interference of either the drug metabolites or other plasma components with the proposed HPLC method for the estimation of nicardipine hydrochloride in human plasma. Due to its simplicity, sensitivity, high precision and accuracy, the proposed HPLC method may be used for biopharmaceutical and pharmacokinetic evaluation of nicardipine hydrochloride and its formulations in humans


2021 ◽  
Vol 84 (3) ◽  
pp. 275-283
Author(s):  
Stephanie Zergiebel ◽  
Andreas Seeling

AbstractDibenzoazecines are a new class of drug candidates for the treatment of schizophrenia. Compared to the drugs currently used in therapy, the azecines have a novel mechanism of action. Thus, they have the potential to cause fewer side effects compared to the standard therapy with a constant high neuroleptic potency. This theory was substantiated by comparative in vivo tests with haloperidol and risperidone. Seventeen new azecine derivatives have already been tested furthermore of stability, physicochemical parameters, pharmacokinetics including esterase cleavage, stability in simulated gastrointestinal fluid, stability at different pH values and determination of octanol/water-partition coefficients. For these substances, class is still a lack of information concerning the metabolism. Therefore, the present study investigated and developed a reliable and reproducible gradient reversed-phase HPLC–UV method to determinate the lead structure LE404 alongside emerging metabolites in compliance with international requirements like ICH guidelines and the European Pharmacopoeia. Up to now, there is no innovative method suitable for such a determination. Chromatographic separations were achieved with a phenomenex™ Gemini column (5 µm C18 110 Å, 250 × 4.60 mm) using a mixture of acetonitrile/potassium dihydrogen phosphate buffer (4 mmol L−1, pH 2.5) as mobile phase. The gradient method flow rate was 1.0 mL min−1, and UV detection was made at 220 nm. The optimized HPLC method was found to be specific, accurate, reproducible and robust for determination of LE404.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Gurinder Singh ◽  
Roopa S. Pai

A rapid reversed-phase high performance liquid chromatography (RP-HPLC) method was developed for the determination of trans-resveratrol (t-RVT) in PLGA nanoparticle formulation. A new formulation of t-RVT loaded PLGA nanoparticles (NPs) with potential stealth properties was prepared by nanoprecipitation method in our laboratory. The desired chromatographic separation was achieved on a Phenomenex C18 column under isocratic conditions using UV detection at 306 nm. The optimized mobile phase consisted of a mixture of methanol: 10 mM potassium dihydrogen phosphate buffer (pH 6.8): acetonitrile (63 : 30 : 7, v/v/v) at a flow rate of 1 mL/min. The linear regression analysis for the calibration curves showed a good linear correlation over the concentration range of 0.025–2.0 μg/ml, with determination coefficients, R2, exceeding 0.9997. The method was shown to be specific, precise at the intraday and interday levels, as reflected by the relative standard deviation (RSD) values, lower than 5.0%, and accurate with bias not exceeding 15% and percentage recovery was found to be in the range between 94.5 and 101.2. The limits of detection and quantification were 0.002 and 0.007 μg/ml, respectively. The method was successfully applied for the determination of t-RVT encapsulation efficiency.


Author(s):  
Yufa Wen ◽  
Shuang Chen ◽  
Yanjuan Yuan ◽  
Qing Shao ◽  
Xuejun He ◽  
...  

AbstractA simple, rapid, efficient and reproducible method based on High Performance Liquid Chromatography (HPLC) for simultaneous determination of prodrug of voriconazole (POV) and voriconazole in beagle plasma has been established and validated. Omeprazole was utilized as the sole internal standard. Analytes and internal standards were extracted through protein precipitation and separated on a Venusil XBP C18 chromatography column (4.6 × 250 mm, 5 µm). The mobile phase was methanol and 20 mmol/L potassium dihydrogen phosphate. Chromatographic separation was achieved by using an isocratic elution procedure that used 65% methanol and a flow rate of 1 mL/min. The ultraviolet (UV) detection wavelength was 256 nm and the total running time was 15 min. This method showed good linear ranges of 100–75,000 ng/mL for voriconazole prodrug and 200–100,000 ng/mL for voriconazole respectively. The precision and accuracy were acceptable. Analytes in plasma samples are stable under different temperatures and storage conditions. The developed HPLC method has been successfully applied to the studies of toxicokinetics of POV after intravenous drip in beagle and provided important information for the further development and application.


Author(s):  
Choudhary B. ◽  
Goyal A. ◽  
Khokra S. L. ◽  
Kaushik D.

A simple, accurate and reproducible HPLC method have been developed for simultaneous estimation of Diclofenac sodium and rabeprazole from their tablets formulations. A phenomenex C18 (Luna) column of length 250×7.5 mm with particle size of the stationary phase 5 μm and S mobile phase potassium dihydrogen phosphate buffer (pH adjusted to 7.5 with 1 M sodium hydroxide) and acetonitrile in the ratio 60: 40 were used in this study. Retention time was found to be 9.20 min and 6.40 min for Rabeprazole and diclofenac sodium respectively. While that for internal standard as domperidone was 11.87 min at a flow rate of 2ml / min. Linearity was found in the concentration range of 10-50 μg /ml for both the drugs in this method. The results of analysis have been validated statistically and also by recovery studies.


2009 ◽  
Vol 92 (3) ◽  
pp. 813-819 ◽  
Author(s):  
Abdalla A Elshanawane ◽  
Samia M Mostafa ◽  
Mohamed S Elgawish

Abstract An HPLC method with photometric detection has been developed for determination of a binary mixture of amiloride hydrochloride and hydrochlorothiazide in human urine using chlorthalidone as the internal standard. Reversed-phase chromatography was performed at room temperature on a cyanopropyl column with the mobile phase consisting of a 10 mM KH2PO4 solution (pH 4.5)methanol (70 + 30, v/v) at a flow rate of 1 mL/min. The detector was set at 214 nm. The total analysis time was 10 min. The method was validated in terms of accuracy, precision, absolute recovery, freeze-thaw stability, bench-top stability, and re-injection reproducibility. The procedure shows good accuracy, repeatability, and selectivity. Moreover, the method was applied directly to urine that had not undergone prior treatment. The intra- and interday coefficients of variation for all compounds were below 4, and the method was highly accurate, with a relative error for all compounds that was below 8. No interference from endogenous compounds in urine samples was found. The proposed method, which is rapid, simple, and does not require any separation steps, has been successfully applied to the assay of human urine containing amiloride hydrochloride and hydrochlorothiazide.


2014 ◽  
Vol 20 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Shweta Havele ◽  
Sunil Dhaneshwar

A simple, precise and accurate high performance liquid chromatography (HPLC) method was developed for the simultaneous estimation of metformin hydrochloride, rosiglitazone maleate, glibenclamide present in multicomponent dosage forms. Chromatography was performed on a 25 cm ? 4.6 mm i.d., 5-?m particle, C18 column with 78:22 (v/v) methanol: 20 mM potassium dihydrogen phosphate buffer as mobile phase at a flow rate of 1.0 ml/min and UV detection at 238 nm for metformin hydrochloride, rosiglitazone maleate, and glibenclamide. The total elution time was shorter than 9 min. This method was found to be precise and reproducible. This proposed method was successfully applied for the analysis of metformin hydrochloride, rosiglitazone maleate, glibenclamide as a bulk drug and in pharmaceutical formulation without any interference from the excipients.


Sign in / Sign up

Export Citation Format

Share Document