scholarly journals Distributions, Sources, and Backward Trajectories of Atmospheric Polycyclic Aromatic Hydrocarbons at Lake Small Baiyangdian, Northern China

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Ning Qin ◽  
Xiang-Zhen Kong ◽  
Ying Zhu ◽  
Wei He ◽  
Qi-Shuang He ◽  
...  

Air samples were collected seasonally at Lake Small Baiyangdian, a shallow lake in northern China, between October 2007 and September 2008. Gas phase, particulate phase and dust fall concentrations of polycyclic aromatic hydrocarbons (PAHs) were measured using a gas chromatograph-mass spectrometer (GC-MS). The distribution and partitioning of atmospheric PAHs were studied, and the major sources were identified; the backward trajectories of air masses starting from the center of Lake Small Baiyangdian were calculated for the entire year. The following results were obtained: (1) The total concentration of 16 priority controlled PAHs (PAH16) in the gas phase was417.2±299.8 ng·m−3, in the particulate phase was150.9±99.2 ng·m−3, and in dust fall was6930.2±3206.5 ng·g−1. (2) Vehicle emission, coal combustion, and biomass combustion were the major sources in the Small Baiyangdian atmosphere and accounted for 28.9%, 45.1% and 26.0% of the total PAHs, respectively. (3) Winter was dominated by relatively greater PAHs polluted northwesterly air mass pathways. Summer showed a dominant relatively clean southern pathway, whereas the trajectories in autumn and spring might be associated with high pollution from Shanxi or Henan province.

Author(s):  
Xiaoyang Yang ◽  
Shijie Liu ◽  
Yuanguan Gao ◽  
Wenjuan Zhao ◽  
Yu Liu ◽  
...  

The varying concentrations of polycyclic aromatic hydrocarbons (PAHs) at remote islands is an important indicator, demonstrating the contributions from different regional combustion sources. In this study, gaseous and particulate PAHs were measured at Weizhou Island in the Gulf of Tonkin from 15th March to 14th April, 2015. The concentrations of PAHs ranged from 116.22 to 186.74 ng/m3 and from 40.19 to 61.86 ng/m3 in gas and particulate phase, respectively, which were much higher than those of some remote sites in Asia. Phenanthrene, fluoranthene, pyrene, and chrysene, which were mainly found in diesel vehicle emissions, had relatively high concentrations in both gas and particulate phases. According to the comprehensive results of back trajectory cluster analysis and diagnostic ratios, the local vessel emission was probably the main source of PAHs, which was much more important than the coal and biomass combustion sources from remoter regions. The toxicities represented by ∑PAH7, benzo(a)pyrene-equivalent carcinogenic power, and 2,3,7,8-tetrachlorodibenzo-p-dioxin-based total toxicity potency are much higher in particulate phase than those in gas phase. However, the toxicities of gas phase should not be neglected from the point of view of indirect-acting mutagenicities due to the high contribution of fluoranthene.


2019 ◽  
Vol 19 (13) ◽  
pp. 8741-8758 ◽  
Author(s):  
Atallah Elzein ◽  
Rachel E. Dunmore ◽  
Martyn W. Ward ◽  
Jacqueline F. Hamilton ◽  
Alastair C. Lewis

Abstract. Ambient particulate matter (PM) can contain a mix of different toxic species derived from a wide variety of sources. This study quantifies the diurnal variation and nocturnal abundance of 16 polycyclic aromatic hydrocarbons (PAHs), 10 oxygenated PAHs (OPAHs) and 9 nitrated PAHs (NPAHs) in ambient PM in central Beijing during winter. Target compounds were identified and quantified using gas chromatography–time-of-flight mass spectrometry (GC-Q-ToF-MS). The total concentration of PAHs varied between 18 and 297 ng m−3 over 3 h daytime filter samples and from 23 to 165 ng m−3 in 15 h night-time samples. The total concentrations of PAHs over 24 h varied between 37 and 180 ng m−3 (mean: 97±43 ng m−3). The total daytime concentrations during high particulate loading conditions for PAHs, OPAHs and NPAHs were 224, 54 and 2.3 ng m−3, respectively. The most abundant PAHs were fluoranthene (33 ng m−3), chrysene (27 ng m−3), pyrene (27 ng m−3), benzo[a]pyrene (27 ng m−3), benzo[b]fluoranthene (25 ng m−3), benzo[a]anthracene (20 ng m−3) and phenanthrene (18 ng m−3). The most abundant OPAHs were 9,10-anthraquinone (18 ng m−3), 1,8-naphthalic anhydride (14 ng m−3) and 9-fluorenone (12 ng m−3), and the three most abundant NPAHs were 9-nitroanthracene (0.84 ng m−3), 3-nitrofluoranthene (0.78 ng m−3) and 3-nitrodibenzofuran (0.45 ng m−3). ∑PAHs and ∑OPAHs showed a strong positive correlation with the gas-phase abundance of NO, CO, SO2 and HONO, indicating that PAHs and OPAHs can be associated with both local and regional emissions. Diagnostic ratios suggested emissions from traffic road and coal combustion were the predominant sources of PAHs in Beijing and also revealed the main source of NPAHs to be secondary photochemical formation rather than primary emissions. PM2.5 and NPAHs showed a strong correlation with gas-phase HONO. 9-Nitroanthracene appeared to undergo a photodegradation during the daytime and showed a strong positive correlation with ambient HONO (R=0.90, P < 0.001). The lifetime excess lung cancer risk for those species that have available toxicological data (16 PAHs, 1 OPAH and 6 NPAHs) was calculated to be in the range 10−5 to 10−3 (risk per million people ranges from 26 to 2053 cases per year).


Author(s):  
M Kalaitzoglou ◽  
C Samara

AbstractParticulate- and gas-phase polycyclic aromatic hydrocarbons (PAHs) were determined in the mainstream smoke (MSS) of 59 manufactured cigarette brands (commercially available brands of unknown tobacco and blend type) with variable ‘tar’ yields and physical/technological characteristics. Depending on the existence/absence of filter, the ‘tar’ yield indicated on the packet, and the cigarette length and diameter, the examined cigarette brands were classified into 15 groups: non filter (NF), high (H), medium (M), light (L), super light (SL), ultra light (UL), one-tar yields (O), 100 mm long cigarettes (H-100, L-100, SL-100, UL-100, O-100), and slim cigarettes (SL-SLIM, UL-SLIM, O-SLIM). Cigarettes were smoked in a reference smoking machine equipped with glass fibre filters for collection of PAHs bound to total particulate matter (TPM), and polyurethane foam plugs (PUF) for collection of gas-phase PAHs. The relationships of gas- and particulate-phase concentrations of PAHs (ng/cig) with the contents of typical MSS components, such as TPM, ‘tar’, nicotine and carbon monoxide were investigated. In addition, the phase partitioning of PAHs in MSS was evaluated in relation to the technological characteristics of cigarettes.


2019 ◽  
Author(s):  
Atallah El zein ◽  
Rachel Ellen Dunmore ◽  
Martyn William Ward ◽  
Jacqueline Fiona Hamilton ◽  
Alastair Charles Lewis

Abstract. Ambient particulate matter (PM) can contain a mix of different toxic species derived from a wide variety of sources. This study quantifies the variation in diurnal and nocturnal abundance of 16 Polycyclic Aromatic Hydrocarbons (PAHs), 10 Oxygenated PAHs (OPAHs) and 9 Nitrated PAHs (NPAHs) in ambient PM in central Beijing during winter. Target compounds were identified and quantified using Gas Chromatography – time of flight mass spectrometry (GC-Q-TOF-MS). The total concentration of PAHs varied between 18 and 297 ng m−3 over 3 h daytime filter samples and from 23 to 165 ng m−3 in 15 h night-time samples. The total concentrations of PAHs over 24 h varied between 37 and 180 ng m−3 (mean: 97 ng m−3). The total daytime concentrations during high particulate loading conditions for PAHs, OPAHs and NPAHs were 224, 54, and 2.3 ng m−3, respectively. The most abundant PAHs were fluoranthene (33 ng m−3), chrysene (27 ng m−3), pyrene (27 ng m−3), benzo(a)pyrene (27 ng m−3), benzo[b]fluoranthene (25 ng m−3), benzo[a]anthracene (20 ng m−3) and phenanthrene (18 ng m−3). 9,10-Anthraquinone (18 ng m−3), 1,8 Naphthalic anhydride (14 ng m−3) and 9-Fluorenone (12 ng m−3) were the three major OPAHs species, while 9-Nitroanthracene (0.84 ng m−3), 3-Nitrofluoranthene (0.78 ng m−3) and 3-Nitrodibenzofuran (0.45 ng m−3) were the three most abundant NPAHs. ∑PAHs and ∑OPAHs showed a strong positive correlation with the gas phase abundance of NO, CO, SO2, and HONO indicating that PAHs and OPAHs can be associated with both local and regional emissions. Diagnostic ratios suggested emissions from traffic road and coal combustion were the predominant sources for PAHs in Beijing, and also revealed the dominant source of NPAHs was secondary photochemical formation rather than primary emissions. PM2.5 and NPAHs showed a strong correlation with gas phase HONO. 9-Nitroanthracene appeared to undergo a photodegradation during the daytime and has shown a strong positive correlation with ambient HONO (R = 0.90, P 


2011 ◽  
Vol 65 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Maja Turk-Sekulic ◽  
Jelena Radonic ◽  
Mirjana Vojinovic-Miloradov ◽  
Nevena Senk ◽  
Marija Okuka

Results of partial or total destruction of industrial plants, military targets, infrastructure, uncontrolled fires and explosions during the conflict period from 1991 to 1999, at the area of Western Balkans, were large amounts of hazardous organic matter that have been generated and emitted in the environment. In order to assess gas/particle partition of seven EPA polychlorinated biphenyls and sixteen EPA polycyclic aromatic hydrocarbons, twenty air samples have been collected at six urban, industrial and highly contaminated localities in Vojvodina. Hi-Vol methodology has been used for collecting ambiental air samples, that simultaneously collects gaseous and particulate phase with polyurethane foam filters (PUF) and glass fiber filters (GFF). PUF and GFF filters have been analyzed, and concentration levels of gaseous PCBs and PAHs molecules in gaseous and particulate phase were obtained, converted and expressed through fraction of individual compounds sorbed onto particulate phase of the sample, in total detected quantity. Experimentally gained gas/particle partitioning values of PCBs and PAHs molecules have been compared with PP-LFER model estimated values. Significant deviation has been noticed during comparative analysis of estimated polyparameter model values for complete set of seven PCBs congeners. Much better agreement of experimental and estimated values is for polycyclic aromatic hydrocarbons, especially for molecules with four rings. These results are in a good correlation with literature data where polyparameter model has been used for predicting gas/particle partition of studied group of organic molecules.


2013 ◽  
Vol 864-867 ◽  
pp. 1364-1368
Author(s):  
Yakup Parida ◽  
Eslamjan Diwani

Based on the principle of solid phase extraction and the purification method using Florida silica, sixteen various kinds of polycyclic aromatic hydrocarbons such as naphthalene, acenaphthene and fluorene were measured in Urumqi snow by means of HPLC. The results showed that the concentration of PAHs was different in different sampling sites in Urumqi. The total concentration of PAHs was in the range of 0.2883 ~ 8.814 µg/mL and the content of PAHs snow was higher than that in water, which indicated that the snow was polluted by organic matters to a certain degree and the pollution was not so serious compared with the groundwater. So the snow has a certain application value for life.


Sign in / Sign up

Export Citation Format

Share Document