scholarly journals The Environmental Consequences of Altered Nitrogen Cycling Resulting from Industrial Activity, Agricultural Production, and Population Growth in China

2001 ◽  
Vol 1 ◽  
pp. 70-80 ◽  
Author(s):  
G.X. Xing ◽  
Z.L. Zhu

Human activities exerted very little effect on nitrogen (N) cycling in China before 1949. Between 1949 and 1999, however, rapid economic development and population growth led to dramatic changes in anthropogenic reactive N, inputted recycling N, N flux on land, N2O emission, and NH3 volatilization. Consequently, these changes have had a tremendous impact on the environment in China. In the current study, we estimated the amount of atmospheric wet N deposition and N transportation into water bodies from the watersheds and major valleys in China. Additionally, we addressed issues on leaching and accumulation of NO3� in the farmland under different climate zones, land use, and cropping systems as well as the potential influence of NO3� on underground water in China.

2016 ◽  
Vol 13 (11) ◽  
pp. 3503-3517 ◽  
Author(s):  
Mianhai Zheng ◽  
Tao Zhang ◽  
Lei Liu ◽  
Weixing Zhu ◽  
Wei Zhang ◽  
...  

Abstract. Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N2O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha−1 yr−1), P addition (150 kg P ha−1 yr−1), and NP addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.9 ± 0.7 µg N2O-N m−2 h−1) than in the mixed (9.9 ± 0.4 µg N2O-N m−2 h−1) or pine (10.8 ± 0.5 µg N2O-N m−2 h−1) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P and NP addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N2O emission in N-rich forests, this effect may only occur under high N deposition and/or long-term P addition, and we suggest future investigations to definitively assess this management strategy and the importance of P in regulating N cycles from regional to global scales.


2005 ◽  
Vol 39 (32) ◽  
pp. 5827-5838 ◽  
Author(s):  
Hugo Denier van der Gon ◽  
Albert Bleeker

1997 ◽  
Vol 8 (3) ◽  
pp. 191-205 ◽  
Author(s):  
Noel D. Uri

The increase in the use of fertilizer in agricultural production has been associated with a substantial increase in agricultural productivity in the United States. This increase in fertilizer use has been driven by a variety of economic forces including variations in the price of output and changing relative factor prices. Associated with the increase in the use of fertilizer have been adverse environmental consequences that are not reflected in the costs and returns of agricultural production. That is, externalities exist whose cost need to be internalized. Because the use of fertilizer has been shown to respond to market forces, it is efficient to use the market to control the use of fertilizer. This can be done through, for example, the use of a fertilizer tax.


2012 ◽  
Vol 9 (8) ◽  
pp. 11201-11237 ◽  
Author(s):  
J. F. J. Korhonen ◽  
M. Pihlatie ◽  
J. Pumpanen ◽  
H. Aaltonen ◽  
P. Hari ◽  
...  

Abstract. The productivity of boreal forests is considered to be limited by low nitrogen (N) availability. Increased atmospheric N deposition has altered the functioning and N cycling of these N-sensitive ecosystems. The most important components of N pools and fluxes were measured in a boreal Scots pine stand in Hyytiälä, Southern Finland. The measurement at the site allowed direct estimations of nutrient pools in the soil and biomass, inputs from the atmosphere and outputs as drainage flow and gaseous losses from two micro-catchments. N was accumulating to the system with a rate of 7 kg N ha−1 yr−1. Nitrogen input as atmospheric deposition was 7.4 kg N ha−1 yr−1. Dry deposition and organic N in wet deposition contributed over half of the input in deposition. Total outputs were 0.4 kg N ha−1 yr−1, the most important outputs being N2O emission to the atmosphere and organic N flux in drainage flow. Nitrogen uptake and retranslocation were as important sources of N for plant growth. Most of the uptaken N originated from decomposition of organic matter, and the fraction of N that could originate directly from deposition was about 30%. In conclusion, atmospheric N deposition fertilizes the site considerably.


2017 ◽  
Vol 9 (2) ◽  
pp. 974-982
Author(s):  
Jagroop Kaur ◽  
Harsimrat K. Bons

Mulching plays an important role in production of agricultural and horticultural crops in the current scenario of declining water table, soil degradation and climate change. The main objectives of mulching are to prevent loss of water by evaporation, prevention of soil erosion, weed control, to reduce fertilizer leaching, to promote soil productivity, to enhance yield and quality of field and fruit crops. So, mulching is useful to save our underground water resource, soil and environment for sustainable crop production. In this review paper, the literature clearly shows pronounced effects of mulching on soil health by improving the soil structure, soil fertility, biological activities, avoid soil degradation in addition to moisture conservation, regulating temperature, encouraging change in favourable micro-climate, check weed growth and ultimately increasing the productivity, quality, profitability and sustainability of crops and cropping systems irrespective of the system/situation.


Author(s):  
Apri Andani

The provisions of food in order to fulfill the requirement for humankind could be followed through the implementation of the process of agricultural production. However, the food requirement could only be fulfilled self-sufficiently if food supplies were higher than the total consumption. The trend of the Indonesian rice production rises the problem that immediately must be overcome. This was caused by increasing consumption continuously resulting from the increase in population growth. Besides that, the other problems are rice field transformation, from rice field to industrial and residential area.


2012 ◽  
Vol 9 (4) ◽  
pp. 1351-1366 ◽  
Author(s):  
X. F. Xu ◽  
H. Q. Tian ◽  
G. S. Chen ◽  
M. L. Liu ◽  
W. Ren ◽  
...  

Abstract. Nitrous oxide (N2O) is a potent greenhouse gas which also contributes to the depletion of stratospheric ozone (O3). However, the magnitude and underlying mechanisms for the spatiotemporal variations in the terrestrial sources of N2O are still far from certain. Using a process-based ecosystem model (DLEM – the Dynamic Land Ecosystem Model) driven by multiple global change factors, including climate variability, nitrogen (N) deposition, rising atmospheric carbon dioxide (CO2), tropospheric O3 pollution, N fertilizer application, and land conversion, this study examined the spatial and temporal variations in terrestrial N2O flux over North America and further attributed these variations to various driving factors. From 1979 to 2010, the North America cumulatively emitted 53.9 ± 0.9 Tg N2O-N (1 Tg = 1012 g), of which global change factors contributed 2.4 ± 0.9 Tg N2O-N, and baseline emission contributed 51.5 ± 0.6 Tg N2O-N. Climate variability, N deposition, O3 pollution, N fertilizer application, and land conversion increased N2O emission while the elevated atmospheric CO2 posed opposite effect at continental level; the interactive effect among multiple factors enhanced N2O emission over the past 32 yr. N input, including N fertilizer application in cropland and N deposition, and multi-factor interaction dominated the increases in N2O emission at continental level. At country level, N fertilizer application and multi-factor interaction made large contribution to N2O emission increase in the United States of America (USA). The climate variability dominated the increase in N2O emission from Canada. N inputs and multiple factors interaction made large contribution to the increases in N2O emission from Mexico. Central and southeastern parts of the North America – including central Canada, central USA, southeastern USA, and all of Mexico – experienced increases in N2O emission from 1979 to 2010. The fact that climate variability and multi-factor interaction largely controlled the inter-annual variations in terrestrial N2O emission at both continental and country levels indicate that projected changes in the global climate system may substantially alter the regime of N2O emission from terrestrial ecosystems during the 21st century. Our study also showed that the interactive effect among global change factors may significantly affect N2O flux, and more field experiments involving multiple factors are urgently needed.


1997 ◽  
Vol 26 (3) ◽  
pp. 141-143
Author(s):  
James R. Simpson

The Look at it this way section of the journal features contributions from distinguished scientists on contentious and current issues in areas such as development, population growth, agricultural production and policy.


1982 ◽  
Vol 41 (4) ◽  
pp. 687-707 ◽  
Author(s):  
Lillian M. Li

This article delineates new approaches to the study of food and famine in Chinese history. Drawing primarily from the three other articles in the symposium, the author asks in what ways the Chinese state, primarily in the high Qing period, affected population growth, agricultural production, natural cycles, and food distribution, and what a historical perspective suggests about the People's Republic of China's efforts to feed its population.


2006 ◽  
Vol 30 (6) ◽  
pp. 901-910 ◽  
Author(s):  
MO Jiang-Ming ◽  
◽  
FANG Yun-Ting ◽  
LIN Er-Da ◽  
LI Yu-E

Sign in / Sign up

Export Citation Format

Share Document