scholarly journals Annotating RNA motifs in sequences and alignments

2014 ◽  
Author(s):  
Paul P Gardner ◽  
Hisham Eldai

RNA performs a diverse array of important functions across all cellular life. These functions include important roles in translation, building translational machinery and maturing messenger RNA. More recent discoveries include the miRNAs and bacterial sRNAs that regulate gene expression, the thermosensors, riboswitches and other cis-regulatory elements that help prokaryotes sense their environment and eukaryotic piRNAs that suppress transposition. However, there can be a long period between the initial discovery of a RNA and determining its function. We present a bioinformatic approach to characterise RNA motifs, which are the central building blocks of RNA structure. These motifs can, in some instances, provide researchers with functional hypotheses for uncharacterised RNAs. Moreover, we introduce a new profile-based database of RNA motifs - RMfam - and illustrate its application for investigating the evolution and functional characterisation of RNA. All the data and scripts associated with this work is available from: https://github.com/ppgardne/RMfam

Open Biology ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 180155 ◽  
Author(s):  
Gloria Lozano ◽  
Rosario Francisco-Velilla ◽  
Encarnacion Martinez-Salas

Beyond the general cap-dependent translation initiation, eukaryotic organisms use alternative mechanisms to initiate protein synthesis. Internal ribosome entry site (IRES) elements are cis -acting RNA regions that promote internal initiation of translation using a cap-independent mechanism. However, their lack of primary sequence and secondary RNA structure conservation, as well as the diversity of host factor requirement to recruit the ribosomal subunits, suggest distinct types of IRES elements. In spite of this heterogeneity, conserved motifs preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES-driven translation. This conservation brings the question of whether IRES elements could consist of basic building blocks, which upon evolutionary selection result in functional elements with different properties. Although RNA-binding proteins (RBPs) perform a crucial role in the assembly of ribonucleoprotein complexes, the versatility and plasticity of RNA molecules, together with their high flexibility and dynamism, determines formation of macromolecular complexes in response to different signals. These properties rely on the presence of short RNA motifs, which operate as modular entities, and suggest that decomposition of IRES elements in short modules could help to understand the different mechanisms driven by these regulatory elements. Here we will review evidence suggesting that model IRES elements consist of the combination of short modules, providing sites of interaction for ribosome subunits, eIFs and RBPs, with implications for definition of criteria to identify novel IRES-like elements genome wide.


2020 ◽  
Author(s):  
Clarence W Chan ◽  
Alfonso Mondragón

Abstract Cobalamin riboswitches encompass a structurally diverse group of cis-acting, gene regulatory elements found mostly in bacterial messenger RNA and are classified into subtypes based on secondary and tertiary characteristics. An unusual variant of the cobalamin riboswitch with predicted structural features was identified in Bacillus subtilis over a decade ago, but its structure and mechanisms of cobalamin selectivity and translational control have remained unsolved. We present the crystal structure of the aptamer domain of this atypical cobalamin riboswitch and a model for the complete riboswitch, including its expression platform domain. We demonstrate that this riboswitch binds to multiple cobalamin derivatives and correlate its promiscuous behavior to its structure and unique arrangement of peripheral elements. Comparative structural analyses between conventional cobalamin riboswitches and the B. subtilis cobalamin riboswitch reveal that the likely basis for this promiscuous ligand binding is intrinsic structural adaptability encoded in the RNA structure. It suggests that cobalamin selectivity might ultimately be viewed as existing on a spectrum of affinity for each derivative rather than as belonging to distinct types based on ligand specificities. Our work provides an interesting and notable example of functional coupling of ligand-sensing and adaptive folding by a structured RNA molecule.


2021 ◽  
Author(s):  
Jayashree Kumar ◽  
Lela Lackey ◽  
Justin M. Waldern ◽  
Abhishek Dey ◽  
David H. Mathews ◽  
...  

AbstractSplicing is a highly regulated process that depends on numerous factors. It is particularly challenging to quantitatively predict how a mutation will affect precursor messenger RNA (mRNA) structure and the subsequent functional consequences. Here we use a novel Mutational Profiling (-MaP) methodology to obtain highly reproducible endogenous precursor and mature mRNA structural probing data in vivo. We use these data to estimate Boltzmann suboptimal ensembles, and predict the structural consequences of mutations on precursor mRNA structure. Together with a structural analysis of recent cryo-EM spliceosome structures at different stages of the splicing cycle, we determined that the footprint of the Bact complex on precursor mRNA is best able to predict splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene. However, structure alone only achieves 74% accuracy. We therefore developed a β-regression weighting framework that incorporates splice site strength, structure and exonic/intronic splicing regulatory elements which together achieves 90% accuracy for 47 known and six newly discovered splice-altering variants. This combined experimental/computational framework represents a path forward for accurate prediction of splicing related disease-causing variants.


1985 ◽  
Vol 260 (12) ◽  
pp. 7651-7658 ◽  
Author(s):  
B K Ray ◽  
T G Lawson ◽  
J C Kramer ◽  
M H Cladaras ◽  
J A Grifo ◽  
...  

1999 ◽  
Vol 91 (6) ◽  
pp. 1844-1844 ◽  
Author(s):  
Valerie E. Armstead ◽  
Irina L. Opentanova ◽  
Alexander G. Minchenko ◽  
Allan M. Lefer

Background Tissue factor (TF) is a cell-surface glycoprotein responsible for initiating the extrinsic pathway of coagulation that has been shown to have a role in the pathophysiology of sepsis and reperfusion injury. The purpose of this study was to investigate TF expression in vital organs and to determine possible regulatory mechanisms of TF expression in the lung during traumatic shock in rats. Methods Noble-Collip drum trauma was induced in anesthetized Sprague-Dawley rats. Anesthetized rats without trauma served as controls. TF activity was measured in plasma and lung tissue. TF messenger RNA (mRNA) was measured in the lung, liver, and small intestine using ribonuclease protection assays. Electromobility shift assays were used to quantify binding of nuclear extracts from lung to TF-specific consensus domains for transcription factors NF-kappaB and AP-1. Results TF activity in plasma increased up to 14-fold and +232% in the lung (P < 0.001 for plasma and lung) 2 h after trauma. TF mRNA level was significantly increased in the lungs (P < 0.01), small intestine (P < 0.01), and liver (P < 0.05) 1 h after trauma compared to sham-operated control rats. TF mRNA expression continued to increase in the lungs and the liver (both, P < 0.001) 2 h after trauma TF sequence-specific complex binding to AP-1 and NF-kappaB domains was enhanced in the lungs of trauma rats (+395%, P < 0.001 and +168%, P < 0.001, respectively). Conclusions These results suggest that TF may play an important role in the pathophysiology of severe trauma and that regulatory elements AP-1 and NF-kappaB may be involved in the regulation of TF mRNA expression in traumatic shock.


2012 ◽  
Vol 48 (94) ◽  
pp. 11573 ◽  
Author(s):  
Kwong Kit Chan ◽  
Vasudevan Ramesh
Keyword(s):  

2021 ◽  
Author(s):  
Christine Roden ◽  
Yifan Dai ◽  
Ian Seim ◽  
Myungwoon Lee ◽  
Rachel Sealfon ◽  
...  

Betacoronavirus SARS-CoV-2 infections caused the global Covid-19 pandemic. The nucleocapsid protein (N-protein) is required for multiple steps in the betacoronavirus replication cycle. SARS-CoV-2-N-protein is known to undergo liquid-liquid phase separation (LLPS) with specific RNAs at particular temperatures to form condensates. We show that N-protein recognizes at least two separate and distinct RNA motifs, both of which require double-stranded RNA (dsRNA) for LLPS. These motifs are separately recognized by N-protein's two RNA binding domains (RBDs). Addition of dsRNA accelerates and modifies N-protein LLPS in vitro and in cells and controls the temperature condensates form. The abundance of dsRNA tunes N-protein-mediated translational repression and may confer a switch from translation to genome packaging. Thus, N-protein's two RBDs interact with separate dsRNA motifs, and these interactions impart distinct droplet properties that can support multiple viral functions. These experiments demonstrate a paradigm of how RNA structure can control the properties of biomolecular condensates.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 650 ◽  
Author(s):  
Lisa J. Simpson ◽  
Ellie Tzima ◽  
John S. Reader

Mechanical forces acting on biological systems, at both the macroscopic and microscopic levels, play an important part in shaping cellular phenotypes. There is a growing realization that biomolecules that respond to force directly applied to them, or via mechano-sensitive signalling pathways, can produce profound changes to not only transcriptional pathways, but also in protein translation. Forces naturally occurring at the molecular level can impact the rate at which the bacterial ribosome translates messenger RNA (mRNA) transcripts and influence processes such as co-translational folding of a nascent protein as it exits the ribosome. In eukaryotes, force can also be transduced at the cellular level by the cytoskeleton, the cell’s internal filamentous network. The cytoskeleton closely associates with components of the translational machinery such as ribosomes and elongation factors and, as such, is a crucial determinant of localized protein translation. In this review we will give (1) a brief overview of protein translation in bacteria and eukaryotes and then discuss (2) how mechanical forces are directly involved with ribosomes during active protein synthesis and (3) how eukaryotic ribosomes and other protein translation machinery intimately associates with the mechanosensitive cytoskeleton network.


2020 ◽  
Vol 48 (16) ◽  
pp. 9285-9300
Author(s):  
Tamari Chkuaseli ◽  
K Andrew White

Abstract The genomes of RNA viruses contain regulatory elements of varying complexity. Many plus-strand RNA viruses employ largescale intra-genomic RNA-RNA interactions as a means to control viral processes. Here, we describe an elaborate RNA structure formed by multiple distant regions in a tombusvirus genome that activates transcription of a viral subgenomic mRNA. The initial step in assembly of this intramolecular RNA complex involves the folding of a large viral RNA domain, which generates a discontinuous binding pocket. Next, a distally-located protracted stem-loop RNA structure docks, via base-pairing, into the binding site and acts as a linchpin that stabilizes the RNA complex and activates transcription. A multi-step RNA folding pathway is proposed in which rate-limiting steps contribute to a delay in transcription of the capsid protein-encoding viral subgenomic mRNA. This study provides an exceptional example of the complexity of genome-scale viral regulation and offers new insights into the assembly schemes utilized by large intra-genomic RNA structures.


Sign in / Sign up

Export Citation Format

Share Document