scholarly journals An accurate genetic clock

2015 ◽  
Author(s):  
David H Hamilton

Molecular clocks give ``Time to most recent common ancestor'' TMRCA} of genetic trees. By Watson-Galton most lineages terminate, with a few overrepresented singular lineages generated by W. Hamilton's ``kin selection''. Applying current methods to this non-uniform branching produces greatly exaggerated TMRCA. We introduce an inhomogenous stochastic process which detects singular lineages by asymmetries, whose reduction gives true TMRCA. This implies a new method for computing mutation rates. Despite low rates similar to mitosis data, reduction implies younger TMRCA, with smaller errors. We establish accuracy by a comparison across a wide range of time, indeed this is only clock giving consistent results for both short and long term times. In particular we show that the dominant European y-haplotypes R1a1a & R1b1a2, expand from c3700BC, not reaching Anatolia before c3300BC. While this contradicts current clocks which date R1b1a2 to either the Neolithic Near East$ or Paleo-Europe, our dates support recent genetic analysis of ancient skeletons by Reich.

2015 ◽  
Author(s):  
David H Hamilton

Our method for “Time to most recent common ancestor” TMRCA of genetic trees for the first time deals with natural selection by apriori mathematics and not as a random factor. Bioprocesses such as “kin selection” generate a few overrepresented “singular lineages” while almost all other lineages terminate. This non-uniform branching gives greatly exaggerated TMRCA with current methods. Thus we introduce an inhomogenous stochastic process which will detect singular lineages by asymmetries, whose “reduction” then gives true TMRCA. This gives a new phylogenetic method for computing mutation rates, with results similar to “pedigree” (meiosis) data. Despite these low rates, reduction implies younger TMRCA, with smaller errors. We establish accuracy by a comparison across a wide range of time, indeed this is only y-clock giving consistent results for 500-15,000 ybp. In particular we show that the dominant European Y-haplotypes R1a1a & R1b1a2, expand from c4000BC, not reaching Anatolia before c3800BC. This contradicts previous clocks dating R1b1a2 to either the Neolithic Near East or Paleo-Europe. However our dates match R1a1a & R1b1a2 found in Yamnaya cemetaries of c3300BC by Nielsen et al (2015), Pääbo et al(2015), together proving R1a1a & R1b1a2 originates in the Russian Steppes.


2015 ◽  
Author(s):  
David H Hamilton

Our method for ``Time to most recent common ancestor'' TMRCA of genetic trees for the first time deals with natural selection by apriori mathematics and not as a random factor. Bioprocesses such as ``kin selection'' generate a few overrepresented ``singular lineages'' while almost all other lineages terminate. This non-uniform branching gives greatly exaggerated TMRCA with current methods. Thus we introduce an inhomogenous stochastic process which will detect singular lineages by asymmetries, whose ``reduction'' then gives true TMRCA. Reduction implies younger TMRCA, with smaller errors. This gives a new phylogenetic method for computing mutation rates, with results similar to ``pedigree'' (meiosis) data. Despite these low rates, reduction implies younger TMRCA, with smaller errors. We establish accuracy by a comparison across a wide range of time, indeed this is only y-clock giving consistent results for 500-15,000 ybp. In particular we show that the dominant European y-haplotypes R1a1a $\& $ R1b1a2, expand from c3700BC, not reaching Anatolia before c3300BC. This contradicts current clocks dating R1b1a2 to either the Neolithic Near East or Paleo-Europe. However our dates match R1a1a $\& $ R1b1a2 found in Yamnaya cemetaries of c3300BC by Svante P\"{a}\"{a}bo et al, together proving R1a1a $\& $ R1b1a2 originates in the Russian Steppes.


Author(s):  
Emily Dolson ◽  
Alexander Lalejini ◽  
Steven Jorgensen ◽  
Charles Ofria

Fine-scale evolutionary dynamics can be challenging to tease out when focused on broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic metrics that operate on lineages and phylogenies in digital evolution experiments with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility. Additionally, we suggest the adoption of four phylogeny measurements from biology: depth of the most-recent common ancestor, phylogenetic richness, phylogenetic divergence, and phylogenetic regularity. We demonstrate the use of each metric on a set of two-dimensional, real-valued optimization problems under a range of mutation rates and selection strengths, confirming our intuitions about what they can tell us about evolutionary dynamics.


Author(s):  
Emily Dolson ◽  
Alexander Lalejini ◽  
Steven Jorgensen ◽  
Charles Ofria

Fine-scale evolutionary dynamics can be challenging to tease out when focused on broad brush strokes of whole populations over long time spans. We propose a suite of diagnostic metrics that operate on lineages and phylogenies in digital evolution experiments with the aim of improving our capacity to quantitatively explore the nuances of evolutionary histories in digital evolution experiments. We present three types of lineage measurements: lineage length, mutation accumulation, and phenotypic volatility. Additionally, we suggest the adoption of four phylogeny measurements from biology: depth of the most-recent common ancestor, phylogenetic richness, phylogenetic divergence, and phylogenetic regularity. We demonstrate the use of each metric on a set of two-dimensional, real-valued optimization problems under a range of mutation rates and selection strengths, confirming our intuitions about what they can tell us about evolutionary dynamics.


2018 ◽  
Vol 115 (29) ◽  
pp. 7557-7562 ◽  
Author(s):  
Barbara Mühlemann ◽  
Ashot Margaryan ◽  
Peter de Barros Damgaard ◽  
Morten E. Allentoft ◽  
Lasse Vinner ◽  
...  

Human parvovirus B19 (B19V) is a ubiquitous human pathogen associated with a number of conditions, such as fifth disease in children and arthritis and arthralgias in adults. B19V is thought to evolve exceptionally rapidly among DNA viruses, with substitution rates previously estimated to be closer to those typical of RNA viruses. On the basis of genetic sequences up to ∼70 years of age, the most recent common ancestor of all B19V has been dated to the early 1800s, and it has been suggested that genotype 1, the most common B19V genotype, only started circulating in the 1960s. Here we present 10 genomes (63.9–99.7% genome coverage) of B19V from dental and skeletal remains of individuals who lived in Eurasia and Greenland from ∼0.5 to ∼6.9 thousand years ago (kya). In a phylogenetic analysis, five of the ancient B19V sequences fall within or basal to the modern genotype 1, and five fall basal to genotype 2, showing a long-term association of B19V with humans. The most recent common ancestor of all B19V is placed ∼12.6 kya, and we find a substitution rate that is an order of magnitude lower than inferred previously. Further, we are able to date the recombination event between genotypes 1 and 3 that formed genotype 2 to ∼5.0–6.8 kya. This study emphasizes the importance of ancient viral sequences for our understanding of virus evolution and phylogenetics.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 862
Author(s):  
Iain McDonald

Databases of commercial DNA-testing companies now contain more customers with sequenced DNA than any completed academic study, leading to growing interest from academic and forensic entities. An important result for both these entities and the test takers themselves is how closely two individuals are related in time, as calculated through one or more molecular clocks. For Y-DNA, existing interpretations of these clocks are insufficiently accurate to usefully measure relatedness in historic times. In this article, I update the methods used to calculate coalescence ages (times to most-recent common ancestor, or TMRCAs) using a new, probabilistic statistical model that includes Y-SNP, Y-STR and ancilliary historical data, and provide examples of its use.


Author(s):  
Alyssa T Brooks ◽  
Hannah K Allen ◽  
Louise Thornton ◽  
Tracy Trevorrow

Abstract Health behavior researchers should refocus and retool as it becomes increasingly clear that the challenges of the COVID-19 pandemic surpass the direct effects of COVID-19 and include unique, drastic, and ubiquitous consequences for health behavior. The circumstances of the pandemic have created a natural experiment, allowing researchers focusing on a wide range of health behaviors and populations with the opportunity to use previously collected and future data to study: (a) changes in health behavior prepandemic and postpandemic, (b) health behavior prevalence and needs amidst the pandemic, and (c) the effects of the pandemic on short- and long-term health behavior. Our field is particularly challenged as we attempt to consider biopsychosocial, political, and environmental factors that affect health and health behavior. These realities, while daunting, should call us to action to refocus and retool our research, prevention, and intervention efforts


Genetics ◽  
1998 ◽  
Vol 150 (3) ◽  
pp. 1187-1198 ◽  
Author(s):  
Mikkel H Schierup ◽  
Xavier Vekemans ◽  
Freddy B Christiansen

Abstract Expectations for the time scale and structure of allelic genealogies in finite populations are formed under three models of sporophytic self-incompatibility. The models differ in the dominance interactions among the alleles that determine the self-incompatibility phenotype: In the SSIcod model, alleles act codominantly in both pollen and style, in the SSIdom model, alleles form a dominance hierarchy, and in SSIdomcod, alleles are codominant in the style and show a dominance hierarchy in the pollen. Coalescence times of alleles rarely differ more than threefold from those under gametophytic self-incompatibility, and transspecific polymorphism is therefore expected to be equally common. The previously reported directional turnover process of alleles in the SSIdomcod model results in coalescence times lower and substitution rates higher than those in the other models. The SSIdom model assumes strong asymmetries in allelic action, and the most recessive extant allele is likely to be the most recent common ancestor. Despite these asymmetries, the expected shape of the allele genealogies does not deviate markedly from the shape of a neutral gene genealogy. The application of the results to sequence surveys of alleles, including interspecific comparisons, is discussed.


Author(s):  
Wenjun Cheng ◽  
Tianjiao Ji ◽  
Shuaifeng Zhou ◽  
Yong Shi ◽  
Lili Jiang ◽  
...  

AbstractEchovirus 6 (E6) is associated with various clinical diseases and is frequently detected in environmental sewage. Despite its high prevalence in humans and the environment, little is known about its molecular phylogeography in mainland China. In this study, 114 of 21,539 (0.53%) clinical specimens from hand, foot, and mouth disease (HFMD) cases collected between 2007 and 2018 were positive for E6. The complete VP1 sequences of 87 representative E6 strains, including 24 strains from this study, were used to investigate the evolutionary genetic characteristics and geographical spread of E6 strains. Phylogenetic analysis based on VP1 nucleotide sequence divergence showed that, globally, E6 strains can be grouped into six genotypes, designated A to F. Chinese E6 strains collected between 1988 and 2018 were found to belong to genotypes C, E, and F, with genotype F being predominant from 2007 to 2018. There was no significant difference in the geographical distribution of each genotype. The evolutionary rate of E6 was estimated to be 3.631 × 10-3 substitutions site-1 year-1 (95% highest posterior density [HPD]: 3.2406 × 10-3-4.031 × 10-3 substitutions site-1 year-1) by Bayesian MCMC analysis. The most recent common ancestor of the E6 genotypes was traced back to 1863, whereas their common ancestor in China was traced back to around 1962. A small genetic shift was detected in the Chinese E6 population size in 2009 according to Bayesian skyline analysis, which indicated that there might have been an epidemic around that year.


Genetics ◽  
1999 ◽  
Vol 151 (3) ◽  
pp. 1217-1228 ◽  
Author(s):  
Carsten Wiuf ◽  
Jotun Hein

Abstract In this article we discuss the ancestry of sequences sampled from the coalescent with recombination with constant population size 2N. We have studied a number of variables based on simulations of sample histories, and some analytical results are derived. Consider the leftmost nucleotide in the sequences. We show that the number of nucleotides sharing a most recent common ancestor (MRCA) with the leftmost nucleotide is ≈log(1 + 4N Lr)/4Nr when two sequences are compared, where L denotes sequence length in nucleotides, and r the recombination rate between any two neighboring nucleotides per generation. For larger samples, the number of nucleotides sharing MRCA with the leftmost nucleotide decreases and becomes almost independent of 4N Lr. Further, we show that a segment of the sequences sharing a MRCA consists in mean of 3/8Nr nucleotides, when two sequences are compared, and that this decreases toward 1/4Nr nucleotides when the whole population is sampled. A measure of the correlation between the genealogies of two nucleotides on two sequences is introduced. We show analytically that even when the nucleotides are separated by a large genetic distance, but share MRCA, the genealogies will show only little correlation. This is surprising, because the time until the two nucleotides shared MRCA is reciprocal to the genetic distance. Using simulations, the mean time until all positions in the sample have found a MRCA increases logarithmically with increasing sequence length and is considerably lower than a theoretically predicted upper bound. On the basis of simulations, it turns out that important properties of the coalescent with recombinations of the whole population are reflected in the properties of a sample of low size.


Sign in / Sign up

Export Citation Format

Share Document