scholarly journals Leveraging distant relatedness to quantify human mutation and gene conversion rates

2015 ◽  
Author(s):  
Pier Francesco Palamara ◽  
Laurent Francioli ◽  
Giulio Genovese ◽  
Peter Wilton ◽  
Alexander Gusev ◽  
...  

The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene conversion rates using the number of sequence differences observed in identical-by-descent (IBD) segments together with a reconstructed model of recent population size history. This approach is robust to, and can quantify, the presence of substantial genotyping error, as validated in coalescent simulations. We applied the method to 498 trio-phased Dutch individuals from the Genome of the Netherlands (GoNL) project, sequenced at an average depth of 13×. We infer a point mutation rate of 1.66 ± 0.04 × 10-8per base per generation, and a rate of 1.26 ± 0.06 × 10-9for <20 bp indels. Our estimated average genome-wide mutation rate is higher than most pedigree-based estimates reported thus far, but lower than estimates obtained using substitution rates across primates. By quantifying how estimates vary as a function of allele frequency, we infer the probability that a site is involved in non-crossover gene conversion as 5.99 ± 0.69 × 10-6, consistent with recent reports. We find that recombination does not have observable mutagenic effects after gene conversion is accounted for, and that local gene conversion rates reflect recombination rates. We detect a strong enrichment for recent deleterious variation among mismatching variants found within IBD regions, and observe summary statistics of local IBD sharing to closely match previously proposed metrics of background selection, but find no significant effects of selection on our estimates of mutation rate. We detect no evidence for strong variation of mutation rates in a number of genomic annotations obtained from several recent studies.

2015 ◽  
Vol 97 (6) ◽  
pp. 775-789 ◽  
Author(s):  
Pier Francesco Palamara ◽  
Laurent C. Francioli ◽  
Peter R. Wilton ◽  
Giulio Genovese ◽  
Alexander Gusev ◽  
...  

2018 ◽  
Author(s):  
Ching-Ho Chang ◽  
Amanda M. Larracuente

ABSTRACTHeterochromatic regions of the genome are repeat-rich and gene poor, and are therefore underrepresented in even in the best genome assemblies. One of the most difficult regions of the genome to assemble are sex-limited chromosomes. The Drosophila melanogaster Y chromosome is entirely heterochromatic, yet has wide-ranging effects on male fertility, fitness, and genome-wide gene expression. The genetic basis of this phenotypic variation is difficult to study, in part because we do not know the detailed organization of the Y chromosome. To study Y chromosome organization in D. melanogaster, we develop an assembly strategy involving the in silico enrichment of heterochromatic long single-molecule reads and use these reads to create targeted de novo assemblies of heterochromatic sequences. We assigned contigs to the Y chromosome using Illumina reads to identify male-specific sequences. Our pipeline extends the D. melanogaster reference genome by 11.9-Mb, closes 43.8% of the gaps, and improves overall contiguity. The addition of 10.6 MB of Y-linked sequence permitted us to study the organization of repeats and genes along the Y chromosome. We detected a high rate of duplication to the pericentric regions of the Y chromosome from other regions in the genome. Most of these duplicated genes exist in multiple copies. We detail the evolutionary history of one sex-linked gene family—crystal-Stellate. While the Y chromosome does not undergo crossing over, we observed high gene conversion rates within and between members of the crystal-Stellate gene family, Su(Ste), and PCKR, compared to genome-wide estimates. Our results suggest that gene conversion and gene duplication play an important role in the evolution of Y-linked genes.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1269-1278 ◽  
Author(s):  
Bernhard Haubold ◽  
Jürgen Kroymann ◽  
Andreas Ratzka ◽  
Thomas Mitchell-Olds ◽  
Thomas Wiehe

Abstract Arabidopsis thaliana is a highly selfing plant that nevertheless appears to undergo substantial recombination. To reconcile its selfing habit with the observations of recombination, we have sampled the genetic diversity of A. thaliana at 14 loci of ~500 bp each, spread across 170 kb of genomic sequence centered on a QTL for resistance to herbivory. A total of 170 of the 6321 nucleotides surveyed were polymorphic, with 169 being biallelic. The mean silent genetic diversity (πs) varied between 0.001 and 0.03. Pairwise linkage disequilibria between the polymorphisms were negatively correlated with distance, although this effect vanished when only pairs of polymorphisms with four haplotypes were included in the analysis. The absence of a consistent negative correlation between distance and linkage disequilibrium indicated that gene conversion might have played an important role in distributing genetic diversity throughout the region. We tested this by coalescent simulations and estimate that up to 90% of recombination is due to gene conversion.


Genetics ◽  
1989 ◽  
Vol 121 (4) ◽  
pp. 857-860 ◽  
Author(s):  
A Hastings

Abstract I determine the contribution of linkage disequilibrium to genetic variances using results for two loci and for induced or marginal systems. The analysis allows epistasis and dominance, but assumes that mutation is weak relative to selection. The linkage disequilibrium component of genetic variance is shown to be unimportant for unlinked loci if the gametic mutation rate divided by the harmonic mean of the pairwise recombination rates is much less than one. For tightly linked loci, linkage disequilibrium is unimportant if the gametic mutation rate divided by the (induced) per locus selection is much less than one.


Genetics ◽  
2004 ◽  
Vol 166 (1) ◽  
pp. 307-329 ◽  
Author(s):  
Paul B. Samollow ◽  
Candace M. Kammerer ◽  
Susan M. Mahaney ◽  
Jennifer L. Schneider ◽  
Scott J. Westenberger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document