scholarly journals Genome-wide determination of poly(A) sites in Medicago truncatula: evolutionary conservation of alternative poly(A) site choice

BMC Genomics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 615 ◽  
Author(s):  
Xiaohui Wu ◽  
Bobby Gaffney ◽  
Arthur G Hunt ◽  
Qingshun Q Li
Author(s):  
Pratap Kumar Pati ◽  
Liuyin Ma ◽  
Arthur G. Hunt
Keyword(s):  

2020 ◽  
Vol 402 (1) ◽  
pp. 89-98
Author(s):  
Nathalie Meiser ◽  
Nicole Mench ◽  
Martin Hengesbach

AbstractN6-methyladenosine (m6A) is the most abundant modification in mRNA. The core of the human N6-methyltransferase complex (MTC) is formed by a heterodimer consisting of METTL3 and METTL14, which specifically catalyzes m6A formation within an RRACH sequence context. Using recombinant proteins in a site-specific methylation assay that allows determination of quantitative methylation yields, our results show that this complex methylates its target RNAs not only sequence but also secondary structure dependent. Furthermore, we demonstrate the role of specific protein domains on both RNA binding and substrate turnover, focusing on postulated RNA binding elements. Our results show that one zinc finger motif within the complex is sufficient to bind RNA, however, both zinc fingers are required for methylation activity. We show that the N-terminal domain of METTL3 alters the secondary structure dependence of methylation yields. Our results demonstrate that a cooperative effect of all RNA-binding elements in the METTL3–METTL14 complex is required for efficient catalysis, and that binding of further proteins affecting the NTD of METTL3 may regulate substrate specificity.


2009 ◽  
Vol 21 (9) ◽  
pp. 2780-2796 ◽  
Author(s):  
Christine Lelandais-Brière ◽  
Loreto Naya ◽  
Erika Sallet ◽  
Fanny Calenge ◽  
Florian Frugier ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0171088 ◽  
Author(s):  
George Msalya ◽  
Eui-Soo Kim ◽  
Emmanuel L. K. Laisser ◽  
Maulilio J. Kipanyula ◽  
Esron D. Karimuribo ◽  
...  

2021 ◽  
Author(s):  
Lijie Wang ◽  
Wei Xue ◽  
Hongxia Zhang ◽  
Runze Gao ◽  
Houyuan Qiu ◽  
...  

Abstract Fusion of CRISPR-Cas9 with cytidine deaminases leads to base editors (BEs) for programmable C-to-T editing, which holds potentials in clinical applications but suffers from off-target (OT) mutations. Here, we applied a cleavable deoxycytidine deaminase inhibitor (dCDI) domain to construct a transformer BE (tBE) system that induces efficient editing with only background levels of genome-wide and transcriptome-wide OT mutations. This step-by-step protocol describes the plasmid construction of tBE system, determination of genome/transcriptome-wide OT mutations and tBE-mediated base editing in vivo.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8471 ◽  
Author(s):  
Lei Ling ◽  
Yue Qu ◽  
Jintao Zhu ◽  
Dan Wang ◽  
Changhong Guo

Valine-glutamine (VQ) proteins are plant-specific proteins that play crucial roles in plant development as well as biotic and abiotic stress responses. VQ genes have been identified in various plants; however, there are no systematic reports in Cicer arietinum or Medicago truncatula. Herein, we identified 19 and 32 VQ genes in C. arietinum and M. truncatula, respectively. A total of these VQ genes were divided into eight groups (I–VIII) based on phylogenetic analysis. Gene structure analyses and motif patterns revealed that these VQ genes might have originated from a common ancestor. In silico analyses demonstrated that these VQ genes were expressed in different tissues. qRT-PCR analysis indicated that the VQ genes were differentially regulated during multiple abiotic stresses. This report presents the first systematic analysis of VQ genes from C. arietinum and M. truncatula and provides a solid foundation for further research of the specific functions of VQ proteins.


Sign in / Sign up

Export Citation Format

Share Document