scholarly journals Publishing descriptions of non-public clinical datasets: guidance for researchers, repositories, editors and funding organisations

2015 ◽  
Author(s):  
Iain Hrynaszkiewicz ◽  
Varsha Khodiyar ◽  
Andrew L Hufton ◽  
Susanna-Assunta Sansone

AbstractSharing of experimental clinical research data usually happens between individuals or research groups rather than via public repositories, in part due to the need to protect research participant privacy. This approach to data sharing makes it difficult to connect journal articles with their underlying datasets and is often insufficient for ensuring access to data in the long term. Voluntary data sharing services such as the Yale Open Data Access (YODA) and Clinical Study Data Request (CSDR) projects have increased accessibility to clinical datasets for secondary uses while protecting patient privacy and the legitimacy of secondary analyses but these resources are generally disconnected from journal articles – where researchers typically search for reliable information to inform future research. New scholarly journal and article types dedicated to increasing accessibility of research data have emerged in recent years and, in general, journals are developing stronger links with data repositories. There is a need for increased collaboration between journals, data repositories, researchers, funders, and voluntary data sharing services to increase the visibility and reliability of clinical research. We propose changes to the format and peer-review process for journal articles to more robustly link them to data that are only available on request. We also propose additional features for data repositories to better accommodate non-public clinical datasets, including Data Use Agreements (DUAs).

2020 ◽  
Author(s):  
Mario Gollwitzer ◽  
Andrea Abele-Brehm ◽  
Christian Fiebach ◽  
Roland Ramthun ◽  
Anne M. Scheel ◽  
...  

Providing access to research data collected as part of scientific publications and publicly funded research projects is now regarded as a central aspect of an open and transparent scientific practice and is increasingly being called for by funding institutions and scientific journals. To this end, researchers should strive to comply with the so-called FAIR principles (of scientific data management), that is, research data should be findable, accessible, interoperable, and reusable. Systematic data management supports these goals and, at the same time, makes it possible to achieve them efficiently. With these revised recommendations on data management and data sharing, which also draw on feedback from a 2018 survey of its members, the German Psychological Society (Deutsche Gesellschaft für Psychologie; DGPs) specifies important basic principles of data management in psychology. Initially, based on discipline-specific definitions of raw data, primary data, secondary data, and metadata, we provide recommendations on the degree of data processing necessary when publishing data. We then discuss data protection as well as aspects of copyright and data usage before defining the qualitative requirements for trustworthy research data repositories. This is followed by a detailed discussion of pragmatic aspects of data sharing, such as the differences between Type 1 and Type 2 data publications, restrictions on use (embargo period), the definition of "scientific use" by secondary users of shared data, and recommendations on how to resolve potential disputes. Particularly noteworthy is the new recommendation of distinct "access categories" for data, each with different requirements in terms of data protection or research ethics. These range from completely open data without usage restrictions ("access category 0") to data shared under a set of standardized conditions (e.g., reuse restricted to scientific purposes; "access category 1"), individualized usage agreements ("access category 2"), and secure data access under strictly controlled conditions (e.g., in a research data center; “access category 3"). The practical implementation of this important innovation, however, will require data repositories to provide the necessary technical functionalities. In summary, the revised recommendations aim to present pragmatic guidelines for researchers to handle psychological research data in an open and transparent manner, while addressing structural challenges to data sharing solutions that are beneficial for all involved parties.


Publications ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 9 ◽  
Author(s):  
Juliana Raffaghelli ◽  
Stefania Manca

In the landscape of Open Science, Open Data (OD) plays a crucial role as data are one of the most basic components of research, despite their diverse formats across scientific disciplines. Opening up data is a recent concern for policy makers and researchers, as the basis for good Open Science practices. The common factor underlying these new practices—the relevance of promoting Open Data circulation and reuse—is mostly a social form of knowledge sharing and construction. However, while data sharing is being strongly promoted by policy making and is becoming a frequent practice in some disciplinary fields, Open Data sharing is much less developed in Social Sciences and in educational research. In this study, practices of OD publication and sharing in the field of Educational Technology are explored. The aim is to investigate Open Data sharing in a selection of Open Data repositories, as well as in the academic social network site ResearchGate. The 23 Open Datasets selected across five OD platforms were analysed in terms of (a) the metrics offered by the platforms and the affordances for social activity; (b) the type of OD published; (c) the FAIR (Findability, Accessibility, Interoperability, and Reusability) data principles compliance; and (d) the extent of presence and related social activity on ResearchGate. The results show a very low social activity in the platforms and very few correspondences in ResearchGate that highlight a limited social life surrounding Open Datasets. Future research perspectives as well as limitations of the study are interpreted in the discussion.


2021 ◽  
Vol 6 ◽  
pp. 355
Author(s):  
Helen Buckley Woods ◽  
Stephen Pinfield

Background: Numerous mechanisms exist to incentivise researchers to share their data. This scoping review aims to identify and summarise evidence of the efficacy of different interventions to promote open data practices and provide an overview of current research. Methods: This scoping review is based on data identified from Web of Science and LISTA, limited from 2016 to 2021. A total of 1128 papers were screened, with 38 items being included. Items were selected if they focused on designing or evaluating an intervention or presenting an initiative to incentivise sharing. Items comprised a mixture of research papers, opinion pieces and descriptive articles. Results: Seven major themes in the literature were identified: publisher/journal data sharing policies, metrics, software solutions, research data sharing agreements in general, open science ‘badges’, funder mandates, and initiatives. Conclusions: A number of key messages for data sharing include: the need to build on existing cultures and practices, meeting people where they are and tailoring interventions to support them; the importance of publicising and explaining the policy/service widely; the need to have disciplinary data champions to model good practice and drive cultural change; the requirement to resource interventions properly; and the imperative to provide robust technical infrastructure and protocols, such as labelling of data sets, use of DOIs, data standards and use of data repositories.


2021 ◽  
Vol 45 (3-4) ◽  
Author(s):  
Anajoyce Samuel Katabalwa ◽  
Jo Bates ◽  
Pamela Abbott

Purpose: The purpose of this paper was to examine the potential opportunities and risks of sharing agricultural research data in Tanzania identified in the existing research literature. Design/methodology/approach: The study involved a review of the literature on research data sharing practices. Findings: The findings indicate that, research data sharing have significant positive benefits among researchers such as increase high research impact; enhancing international community collaboration among researchers with same interests; improving scientific transparency and accuracy of data (Rappert and Bezuidenhout, 2016); increasing research output whereby a single dataset can be used to generate more than one article by different authors; and many more. The risks hampering data sharing practices includes researchers’ fears that data will be scooped, poached or misused (Onyancha, 2016); unreliable electric power; lack of fund to support research data sharing activities; absence of institutional governmental support for data management; perceived lack of evidence benefits (Leonelli, Rappert and Bezuidenhout, 2018); and others. However, in Tanzania research data sharing is relatively new, thus, no any governmental agency mandating or encouraging research data sharing; therefore, there is no research data management; no research open data repositories and no research data sharing policy at any agricultural institution in Tanzania. The study recommends that agricultural researchers should be sensitized to share their data, research data policy and data repositories should also be established to support data sharing practices in Tanzania. Originality and usefulness: From the available literature, this has been the first time that an effort has been made to examine the potential opportunities and risks of sharing agricultural research data in Tanzania. The study could be used by agricultural institutions and other institutions to assess the researchers’ needs in supporting research data sharing. Also, it can be used by the government and institutions to see the need of establishing open data repositories and open data policies to support research data sharing.


2021 ◽  
Vol 1 ◽  
pp. 80
Author(s):  
Thijs Devriendt ◽  
Clemens Ammann ◽  
Folkert W. Asselbergs ◽  
Alexander Bernier ◽  
Rodrigo Costas ◽  
...  

Various data sharing platforms are being developed to enhance the sharing of cohort data by addressing the fragmented state of data storage and access systems. However, policy challenges in several domains remain unresolved. The euCanSHare workshop was organized to identify and discuss these challenges and to set the future research agenda. Concerns over the multiplicity and long-term sustainability of platforms, lack of resources, access of commercial parties to medical data, credit and recognition mechanisms in academia and the organization of data access committees are outlined. Within these areas, solutions need to be devised to ensure an optimal functioning of platforms.


2020 ◽  
Vol 6 ◽  
Author(s):  
Christoph Steinbeck ◽  
Oliver Koepler ◽  
Felix Bach ◽  
Sonja Herres-Pawlis ◽  
Nicole Jung ◽  
...  

The vision of NFDI4Chem is the digitalisation of all key steps in chemical research to support scientists in their efforts to collect, store, process, analyse, disclose and re-use research data. Measures to promote Open Science and Research Data Management (RDM) in agreement with the FAIR data principles are fundamental aims of NFDI4Chem to serve the chemistry community with a holistic concept for access to research data. To this end, the overarching objective is the development and maintenance of a national research data infrastructure for the research domain of chemistry in Germany, and to enable innovative and easy to use services and novel scientific approaches based on re-use of research data. NFDI4Chem intends to represent all disciplines of chemistry in academia. We aim to collaborate closely with thematically related consortia. In the initial phase, NFDI4Chem focuses on data related to molecules and reactions including data for their experimental and theoretical characterisation. This overarching goal is achieved by working towards a number of key objectives: Key Objective 1: Establish a virtual environment of federated repositories for storing, disclosing, searching and re-using research data across distributed data sources. Connect existing data repositories and, based on a requirements analysis, establish domain-specific research data repositories for the national research community, and link them to international repositories. Key Objective 2: Initiate international community processes to establish minimum information (MI) standards for data and machine-readable metadata as well as open data standards in key areas of chemistry. Identify and recommend open data standards in key areas of chemistry, in order to support the FAIR principles for research data. Finally, develop standards, if there is a lack. Key Objective 3: Foster cultural and digital change towards Smart Laboratory Environments by promoting the use of digital tools in all stages of research and promote subsequent Research Data Management (RDM) at all levels of academia, beginning in undergraduate studies curricula. Key Objective 4: Engage with the chemistry community in Germany through a wide range of measures to create awareness for and foster the adoption of FAIR data management. Initiate processes to integrate RDM and data science into curricula. Offer a wide range of training opportunities for researchers. Key Objective 5: Explore synergies with other consortia and promote cross-cutting development within the NFDI. Key Objective 6: Provide a legally reliable framework of policies and guidelines for FAIR and open RDM.


Author(s):  
Liah Shonhe

The main focus of the study was to explore the practices of open data sharing in the agricultural sector, including establishing the research outputs concerning open data in agriculture. The study adopted a desktop research methodology based on literature review and bibliographic data from WoS database. Bibliometric indicators discussed include yearly productivity, most prolific authors, and enhanced countries. Study findings revealed that research activity in the field of agriculture and open access is very low. There were 36 OA articles and only 6 publications had an open data badge. Most researchers do not yet embrace the need to openly publish their data set despite the availability of numerous open data repositories. Unfortunately, most African countries are still lagging behind in management of agricultural open data. The study therefore recommends that researchers should publish their research data sets as OA. African countries need to put more efforts in establishing open data repositories and implementing the necessary policies to facilitate OA.


2018 ◽  
Vol 4 (1) ◽  
pp. 68-75 ◽  
Author(s):  
H. Spallek ◽  
S.M. Weinberg ◽  
M. Manz ◽  
S. Nanayakkara ◽  
X. Zhou ◽  
...  

Introduction: Increasing attention is being given to the roles of data management and data sharing in the advancement of research. This study was undertaken to explore opinions and past experiences of established dental researchers as related to data sharing and data management. Methods: Researchers were recruited from the International Association for Dental Research scientific groups to complete a survey consisting of Likert-type, multiple-choice, and open-ended questions. Results: All 42 respondents indicated that data sharing should be promoted and facilitated, but many indicated reservations or concerns about the proper use of data and the protection of research subjects. Many had used data from data repositories and received requests for data originating from their studies. Opinions varied regarding restrictions such as requirements to share data and the time limits of investigator rights to keep data. Respondents also varied in their methods of data management and storage, with younger respondents and those with higher direct costs of their research tending to use dedicated experts to manage their data. Discussion: The expressed respondent support for research data sharing, with the noted concerns, complements the idea of developing managed data clearinghouses capable of promoting, managing, and overseeing the data-sharing process. Knowledge Transfer Statement: Researchers can use the results of this study to evaluate and improve management and sharing of research data. By encouraging and facilitating the data-sharing process, research can advance more efficiently, and research findings can be implemented into practice more rapidly to improve patient care and the overall oral health of populations.


2016 ◽  
Vol 375 (5) ◽  
pp. 403-405 ◽  
Author(s):  
Harlan M. Krumholz ◽  
Joanne Waldstreicher
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document