scholarly journals Species-level resolution of 16S rRNA gene amplicons sequenced through the MinIONTM portable nanopore sequencer

2015 ◽  
Author(s):  
Alfonso Benítez-Páez ◽  
Kevin J. Portune ◽  
Yolanda Sanz

AbstractBackgroundThe miniaturised and portable DNA sequencer MinIONTM has been released to the scientific community within the framework of an early access programme to evaluate its application for a wide variety of genetic approaches. This technology has demonstrated great potential, especially in genome-wide analyses. In this study, we tested the ability of the MinIONTM system to perform amplicon sequencing in order to design new approaches to study microbial diversity using nearly full-length 16S rDNA sequences.ResultsUsing R7.3 chemistry, we generated more than 3.8 million events (nt) during a single sequencing run. These data were sufficient to reconstruct more than 90% of the 16S rRNA gene sequences for 20 different species present in a mock reference community. After read mapping and 16S rRNA gene assembly, consensus sequences and 2d reads were recovered to assign taxonomic classification down to the species level. Additionally, we were able to measure the relative abundance of all the species present in a mock community and detected a biased species distribution originating from the PCR reaction using ‘universal’ primers.ConclusionsAlthough nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, the MinIONTM DNA sequencer is valuable for both high taxonomic resolution and microbial diversity analysis. Improvements in nanopore chemistry, such as minimising base-calling errors and the nucleotide bias reported here for 16S amplicon sequencing, will further deliver more reliable information that is useful for the specific detection of microbial species and strains in complex ecosystems.

2020 ◽  
Vol 178 ◽  
pp. 115815 ◽  
Author(s):  
Theo Y.C. Lam ◽  
Ran Mei ◽  
Zhuoying Wu ◽  
Patrick K.H. Lee ◽  
Wen-Tso Liu ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kirsten A. Ziesemer ◽  
Allison E. Mann ◽  
Krithivasan Sankaranarayanan ◽  
Hannes Schroeder ◽  
Andrew T. Ozga ◽  
...  

Abstract To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.


2021 ◽  
Author(s):  
Yuta Kinoshita ◽  
Hidekazu NIWA ◽  
Eri UCHIDA-FUJII ◽  
Toshio NUKADA

Abstract Microbial communities are commonly studied by using amplicon sequencing of part of the 16S rRNA gene. Sequencing of the full-length 16S rRNA gene can provide higher taxonomic resolution and accuracy. To obtain even higher taxonomic resolution, with as few false-positives as possible, we assessed a method using long amplicon sequencing targeting the rRNA operon combined with a CCMetagen pipeline. Taxonomic assignment had >90% accuracy at the species level in a mock sample and at the family level in equine fecal samples, generating similar taxonomic composition as shotgun sequencing. The rRNA operon amplicon sequencing of equine fecal samples underestimated compositional percentages of bacterial strains containing unlinked rRNA genes by a third to almost a half, but unlinked rRNA genes had a limited effect on the overall results. The rRNA operon amplicon sequencing with the A519F + U2428R primer set was able to reflect archaeal genomes, whereas full-length 16S rRNA with 27F + 1492R could not. Therefore, we conclude that amplicon sequencing targeting the rRNA operon captures more detailed variations of bacterial and archaeal microbiota.


2006 ◽  
Vol 72 (11) ◽  
pp. 6902-6906 ◽  
Author(s):  
Eitan Ben-Dov ◽  
Orr H. Shapiro ◽  
Nachshon Siboni ◽  
Ariel Kushmaro

ABSTRACT To overcome the shortcomings of universal 16S rRNA gene primers 8F and 907R when studying the diversity of complex microbial communities, the 3′ termini of both primers were replaced with inosine. A comparison of the clone libraries derived using both primer sets showed seven bacterial phyla amplified by the altered primer set (8F-I/907R-I) whereas the original set amplified sequences belonging almost exclusively to Proteobacteria (95.8%). Sequences belonging to Firmicutes (42.6%) and Thermotogae (9.3%) were more abundant in a library obtained by using 8F-I/907R-I at a PCR annealing temperature of 54°C, while Proteobacteria sequences were more frequent (62.7%) in a library obtained at 50°C, somewhat resembling the result obtained using the original primer set. The increased diversity revealed by using primers 8F-I/907R-I confirms the usefulness of primers with inosine at the 3′ termini in studying the microbial diversity of environmental samples.


mBio ◽  
2012 ◽  
Vol 3 (5) ◽  
Author(s):  
Dea Shahinas ◽  
Michael Silverman ◽  
Taylor Sittler ◽  
Charles Chiu ◽  
Peter Kim ◽  
...  

ABSTRACT Fecal microbiome transplantation by low-volume enema is an effective, safe, and inexpensive alternative to antibiotic therapy for patients with chronic relapsing Clostridium difficile infection (CDI). We explored the microbial diversity of pre- and posttransplant stool specimens from CDI patients (n = 6) using deep sequencing of the 16S rRNA gene. While interindividual variability in microbiota change occurs with fecal transplantation and vancomycin exposure, in this pilot study we note that clinical cure of CDI is associated with an increase in diversity and richness. Genus- and species-level analysis may reveal a cocktail of microorganisms or products thereof that will ultimately be used as a probiotic to treat CDI. IMPORTANCE Antibiotic-associated diarrhea (AAD) due to Clostridium difficile is a widespread phenomenon in hospitals today. Despite the use of antibiotics, up to 30% of patients are unable to clear the infection and suffer recurrent bouts of diarrheal disease. As a result, clinicians have resorted to fecal microbiome transplantation (FT). Donor stool for this type of therapy is typically obtained from a spouse or close relative and thoroughly tested for various pathogenic microorganisms prior to infusion. Anecdotal reports suggest a very high success rate of FT in patients who fail antibiotic treatment (>90%). We used deep-sequencing technology to explore the human microbial diversity in patients with Clostridium difficile infection (CDI) disease after FT. Genus- and species-level analysis revealed a cocktail of microorganisms in the Bacteroidetes and Firmicutes phyla that may ultimately be used as a probiotic to treat CDI.


2019 ◽  
Author(s):  
Jean-Claude OGIER ◽  
Sylvie Pagès ◽  
Maxime Galan ◽  
Matthieu Barret ◽  
Sophie Gaudriault

Abstract Background Microbiome composition is frequently studied by the amplification and high-throughput sequencing of specific molecular markers (metabarcoding). Various hypervariable regions of the 16S rRNA gene are classically used to estimate bacterial diversity, but other universal bacterial markers with a finer taxonomic resolution could be employed. We compared specificity and sensitivity between a portion of the rpoB gene and the V3V4 hypervariable region of the 16S rRNA gene. Results We first designed universal primers for rpoB suitable for use with Illumina sequencing-based technology and constructed a reference rpoB database of 45,000 sequences. The rpoB and V3V4 markers were amplified and sequenced from (i) a mock community of 19 bacterial strains from both Gram-negative and Gram-positive lineages; (ii) bacterial assemblages associated with entomopathogenic nematodes. In metabarcoding analyses of mock communities with two analytical pipelines (FROGS and DADA2), the estimated diversity captured with the rpoB marker resembled the expected composition of these mock communities more closely than that captured with V3V4. The rpoB marker had a higher level of taxonomic affiliation, a higher sensitivity (detection of all the species present in the mock communities), and a higher specificity (low rates of spurious OTU detection) than V3V4. We applied both primers to infective juveniles of the nematode Steinernema glaseri. Both markers showed the bacterial community associated with this nematode to be of low diversity (< 50 OTUs), but only rpoB reliably detected the symbiotic bacterium Xenorhabdus poinarii. Conclusions Our results confirm that different microbiota composition data may be obtained with different markers. We found that rpoB was a highly appropriate marker for assessing the taxonomic structure of mock communities and the nematode microbiota. Further studies on other ecosystems should be considered to evaluate the universal usefulness of the rpoB marker. Our data highlight two crucial elements that should be taken into account to ensure more reliable and accurate descriptions of microbial diversity in high-throughput amplicon sequencing analyses: i) the need to include mock communities as controls; ii) the advantages of using a multigenic approach including at least one housekeeping gene (rpoB is a good candidate) and one variable region of the 16S rRNA gene.


2019 ◽  
Author(s):  
Jean-Claude OGIER ◽  
Sylvie Pagès ◽  
Maxime Galan ◽  
Matthieu Barret ◽  
Sophie Gaudriault

Abstract Background Microbiome composition is frequently studied by the amplification and high-throughput sequencing of specific molecular markers (metabarcoding). Various hypervariable regions of the 16S rRNA gene are classically used to estimate bacterial diversity, but other universal bacterial markers with a finer taxonomic resolution could be employed. We compared specificity and sensitivity between a portion of the rpoB gene and the V3V4 hypervariable region of the 16S rRNA gene. Results We first designed universal primers for rpoB suitable for use with Illumina sequencing-based technology and constructed a reference rpoB database of 45,000 sequences. The rpoB and V3V4 markers were amplified and sequenced from (i) a mock community of 19 bacterial strains from both Gram-negative and Gram-positive lineages; (ii) bacterial assemblages associated with entomopathogenic nematodes. In metabarcoding analyses of mock communities with two analytical pipelines (FROGS and DADA2), the estimated diversity captured with the rpoB marker resembled the expected composition of these mock communities more closely than that captured with V3V4. The rpoB marker had a higher level of taxonomic affiliation, a higher sensitivity (detection of all the species present in the mock communities), and a higher specificity (low rates of spurious OTU detection) than V3V4. We applied both primers to infective juveniles of the nematode Steinernema glaseri. Both markers showed the bacterial community associated with this nematode to be of low diversity (< 50 OTUs), but only rpoB reliably detected the symbiotic bacterium Xenorhabdus poinarii. Conclusions Our results confirm that different microbiota composition data may be obtained with different markers. We found that rpoB was a highly appropriate marker for assessing the taxonomic structure of mock communities and the nematode microbiota. Further studies on other ecosystems should be considered to evaluate the universal usefulness of the rpoB marker. Our data highlight two crucial elements that should be taken into account to ensure more reliable and accurate descriptions of microbial diversity in high-throughput amplicon sequencing analyses: i) the need to include mock communities as controls; ii) the advantages of using a multigenic approach including at least one housekeeping gene (rpoB is a good candidate) and one variable region of the 16S rRNA gene.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yoshiyuki Matsuo ◽  
Shinnosuke Komiya ◽  
Yoshiaki Yasumizu ◽  
Yuki Yasuoka ◽  
Katsura Mizushima ◽  
...  

Abstract Background Species-level genetic characterization of complex bacterial communities has important clinical applications in both diagnosis and treatment. Amplicon sequencing of the 16S ribosomal RNA (rRNA) gene has proven to be a powerful strategy for the taxonomic classification of bacteria. This study aims to improve the method for full-length 16S rRNA gene analysis using the nanopore long-read sequencer MinION™. We compared it to the conventional short-read sequencing method in both a mock bacterial community and human fecal samples. Results We modified our existing protocol for full-length 16S rRNA gene amplicon sequencing by MinION™. A new strategy for library construction with an optimized primer set overcame PCR-associated bias and enabled taxonomic classification across a broad range of bacterial species. We compared the performance of full-length and short-read 16S rRNA gene amplicon sequencing for the characterization of human gut microbiota with a complex bacterial composition. The relative abundance of dominant bacterial genera was highly similar between full-length and short-read sequencing. At the species level, MinION™ long-read sequencing had better resolution for discriminating between members of particular taxa such as Bifidobacterium, allowing an accurate representation of the sample bacterial composition. Conclusions Our present microbiome study, comparing the discriminatory power of full-length and short-read sequencing, clearly illustrated the analytical advantage of sequencing the full-length 16S rRNA gene.


Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 494
Author(s):  
Camila G. C. Lemes ◽  
Morghana M. Villa ◽  
Érica B. Felestrino ◽  
Luiza O. Perucci ◽  
Renata A. B. Assis ◽  
...  

The Iron Quadrangle (IQ) is one of the main iron ore producing regions of the world. The exploitation of its reserves jeopardizes the high biological endemism associated with this region. This work aimed to understand the diversity and bacterial potential associated with IQ caves. Floor and ceiling samples of seven ferruginous caves and one quartzite cave were collected, and their microbial relative abundance and diversity were established by 16S rRNA gene amplicon sequencing data. The results showed that ferruginous caves present higher microbial abundance and greater microbial diversity compared to the quartzite cave. Many species belonging to genera found in these caves, such as Pseudonocardia and Streptacidiphilus, are known to produce biomolecules of biotechnological interest as macrolides and polyketides. Moreover, comparative analysis of microbial diversity and metabolic potential in a biofilm in pendant microfeature revealed that the microbiota associated with this structure is more similar to the floor rather than ceiling samples, with the presence of genera that may participate in the genesis of these cavities, for instance, Ferrovum, Geobacter, and Sideroxydans. These results provide the first glimpse of the microbial life in these environments and emphasize the need of conservation programs for these areas, which are under intense anthropogenic exploration.


Author(s):  
Yoshiyuki Matsuo ◽  
Shinnosuke Komiya ◽  
Yoshiaki Yasumizu ◽  
Yuki Yasuoka ◽  
Katsura Mizushima ◽  
...  

AbstractBackgroundSpecies-level genetic characterization of complex bacterial communities has important clinical applications in both diagnosis and treatment. Amplicon sequencing of the 16S ribosomal RNA (rRNA) gene has proven to be a powerful strategy for the taxonomic classification of bacteria. This study aims to improve the method for full-length 16S rRNA gene analysis using the nanopore long-read sequencer MinION™. We compared it to the conventional short-read sequencing method in both a mock bacterial community and human fecal samples.ResultsWe modified our existing protocol for full-length 16S amplicon sequencing by MinION™. A new strategy for library construction with an optimized primer set overcame PCR-associated bias and enabled taxonomic classification across a broad range of bacterial species. We compared the performance of full-length and short-read 16S amplicon sequencing for the characterization of human gut microbiota with a complex bacterial composition. The relative abundance of dominant bacterial genera was highly similar between full-length and short-read sequencing. At the species level, MinION™ long-read sequencing had better resolution for discriminating between members of particular taxa such as Bifidobacterium, allowing an accurate representation of the sample bacterial composition.ConclusionsOur present microbiome study, comparing the discriminatory power of full-length and short-read sequencing, clearly illustrated the analytical advantage of sequencing the full-length 16S rRNA gene, which provided the requisite species-level resolution and accuracy in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document