scholarly journals Intrinsic challenges in ancient microbiome reconstruction using 16S rRNA gene amplification

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kirsten A. Ziesemer ◽  
Allison E. Mann ◽  
Krithivasan Sankaranarayanan ◽  
Hannes Schroeder ◽  
Andrew T. Ozga ◽  
...  

Abstract To date, characterization of ancient oral (dental calculus) and gut (coprolite) microbiota has been primarily accomplished through a metataxonomic approach involving targeted amplification of one or more variable regions in the 16S rRNA gene. Specifically, the V3 region (E. coli 341–534) of this gene has been suggested as an excellent candidate for ancient DNA amplification and microbial community reconstruction. However, in practice this metataxonomic approach often produces highly skewed taxonomic frequency data. In this study, we use non-targeted (shotgun metagenomics) sequencing methods to better understand skewed microbial profiles observed in four ancient dental calculus specimens previously analyzed by amplicon sequencing. Through comparisons of microbial taxonomic counts from paired amplicon (V3 U341F/534R) and shotgun sequencing datasets, we demonstrate that extensive length polymorphisms in the V3 region are a consistent and major cause of differential amplification leading to taxonomic bias in ancient microbiome reconstructions based on amplicon sequencing. We conclude that systematic amplification bias confounds attempts to accurately reconstruct microbiome taxonomic profiles from 16S rRNA V3 amplicon data generated using universal primers. Because in silico analysis indicates that alternative 16S rRNA hypervariable regions will present similar challenges, we advocate for the use of a shotgun metagenomics approach in ancient microbiome reconstructions.

2015 ◽  
Author(s):  
Alfonso Benítez-Páez ◽  
Kevin J. Portune ◽  
Yolanda Sanz

AbstractBackgroundThe miniaturised and portable DNA sequencer MinIONTM has been released to the scientific community within the framework of an early access programme to evaluate its application for a wide variety of genetic approaches. This technology has demonstrated great potential, especially in genome-wide analyses. In this study, we tested the ability of the MinIONTM system to perform amplicon sequencing in order to design new approaches to study microbial diversity using nearly full-length 16S rDNA sequences.ResultsUsing R7.3 chemistry, we generated more than 3.8 million events (nt) during a single sequencing run. These data were sufficient to reconstruct more than 90% of the 16S rRNA gene sequences for 20 different species present in a mock reference community. After read mapping and 16S rRNA gene assembly, consensus sequences and 2d reads were recovered to assign taxonomic classification down to the species level. Additionally, we were able to measure the relative abundance of all the species present in a mock community and detected a biased species distribution originating from the PCR reaction using ‘universal’ primers.ConclusionsAlthough nanopore-based sequencing produces reads with lower per-base accuracy compared with other platforms, the MinIONTM DNA sequencer is valuable for both high taxonomic resolution and microbial diversity analysis. Improvements in nanopore chemistry, such as minimising base-calling errors and the nucleotide bias reported here for 16S amplicon sequencing, will further deliver more reliable information that is useful for the specific detection of microbial species and strains in complex ecosystems.


2021 ◽  
Author(s):  
Jana Kačírová ◽  
Aladár Maďari ◽  
Rastislav Mucha ◽  
Lívia K. Fecskeová ◽  
Izabela Mujakic ◽  
...  

Abstract Dental biofilm is a complex microbial community influenced by many exogenous and endogenous factors. Despite long-term studies, its bacterial composition is still not clearly understood. While most of the research on dental biofilms was conducted in humans, much less information is available from companion animals. In this study, we analyzed the composition of canine dental biofilms using both standard cultivation on solid media and amplicon sequencing, and compared the two approaches. The 16S rRNA gene sequences were used to define the bacterial community of canine dental biofilm with both, culture-dependent and culture-independent methods. After DNA extraction from each sample, the V3-V4 region of the 16S rRNA gene was amplified and sequenced via Illumina MiSeq platform. Isolated bacteria were identified using universal primers and Sanger sequencing. Representatives of 18 bacterial genera belonging to 5 phyla were isolated from solid media. Amplicon sequencing largely expanded this information identifying in total 284 OTUs belonging to 10 bacterial phyla. Amplicon sequencing revealed much higher diversity of bacteria in the canine dental biofilms, when compared to standard cultivation approach. In contrast, cultured representatives of several bacterial families were not identified by amplicon sequencing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jana Kačírová ◽  
Aladár Maďari ◽  
Rastislav Mucha ◽  
Lívia K. Fecskeová ◽  
Izabela Mujakic ◽  
...  

AbstractDental biofilm is a complex microbial community influenced by many exogenous and endogenous factors. Despite long-term studies, its bacterial composition is still not clearly understood. While most of the research on dental biofilms was conducted in humans, much less information is available from companion animals. In this study, we analyzed the composition of canine dental biofilms using both standard cultivation on solid media and amplicon sequencing, and compared the two approaches. The 16S rRNA gene sequences were used to define the bacterial community of canine dental biofilm with both, culture-dependent and culture-independent methods. After DNA extraction from each sample, the V3–V4 region of the 16S rRNA gene was amplified and sequenced via Illumina MiSeq platform. Isolated bacteria were identified using universal primers and Sanger sequencing. Representatives of 18 bacterial genera belonging to 5 phyla were isolated from solid media. Amplicon sequencing largely expanded this information identifying in total 284 operational taxonomic units belonging to 10 bacterial phyla. Amplicon sequencing revealed much higher diversity of bacteria in the canine dental biofilms, when compared to standard cultivation approach. In contrast, cultured representatives of several bacterial families were not identified by amplicon sequencing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bruna Matturro ◽  
Marco Zepilli ◽  
Agnese Lai ◽  
Mauro Majone ◽  
Simona Rossetti

Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players’ role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 μeq/Ld) and TCE/Cr(VI) (146±2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g−1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g−1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Janis R. Bedarf ◽  
Naiara Beraza ◽  
Hassan Khazneh ◽  
Ezgi Özkurt ◽  
David Baker ◽  
...  

Abstract Background Recent studies suggested the existence of (poly-)microbial infections in human brains. These have been described either as putative pathogens linked to the neuro-inflammatory changes seen in Parkinson’s disease (PD) and Alzheimer’s disease (AD) or as a “brain microbiome” in the context of healthy patients’ brain samples. Methods Using 16S rRNA gene sequencing, we tested the hypothesis that there is a bacterial brain microbiome. We evaluated brain samples from healthy human subjects and individuals suffering from PD (olfactory bulb and pre-frontal cortex), as well as murine brains. In line with state-of-the-art recommendations, we included several negative and positive controls in our analysis and estimated total bacterial biomass by 16S rRNA gene qPCR. Results Amplicon sequencing did detect bacterial signals in both human and murine samples, but estimated bacterial biomass was extremely low in all samples. Stringent reanalyses implied bacterial signals being explained by a combination of exogenous DNA contamination (54.8%) and false positive amplification of host DNA (34.2%, off-target amplicons). Several seemingly brain-enriched microbes in our dataset turned out to be false-positive signals upon closer examination. We identified off-target amplification as a major confounding factor in low-bacterial/high-host-DNA scenarios. These amplified human or mouse DNA sequences were clustered and falsely assigned to bacterial taxa in the majority of tested amplicon sequencing pipelines. Off-target amplicons seemed to be related to the tissue’s sterility and could also be found in independent brain 16S rRNA gene sequences. Conclusions Taxonomic signals obtained from (extremely) low biomass samples by 16S rRNA gene sequencing must be scrutinized closely to exclude the possibility of off-target amplifications, amplicons that can only appear enriched in biological samples, but are sometimes assigned to bacterial taxa. Sequences must be explicitly matched against any possible background genomes present in large quantities (i.e., the host genome). Using close scrutiny in our approach, we find no evidence supporting the hypothetical presence of either a brain microbiome or a bacterial infection in PD brains.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Sandra Reitmeier ◽  
Thomas C. A. Hitch ◽  
Nicole Treichel ◽  
Nikolaos Fikas ◽  
Bela Hausmann ◽  
...  

Abstract16S rRNA gene amplicon sequencing is a popular approach for studying microbiomes. However, some basic concepts have still not been investigated comprehensively. We studied the occurrence of spurious sequences using defined microbial communities based on data either from the literature or generated in three sequencing facilities and analyzed via both operational taxonomic units (OTUs) and amplicon sequence variants (ASVs) approaches. OTU clustering and singleton removal, a commonly used approach, delivered approximately 50% (mock communities) to 80% (gnotobiotic mice) spurious taxa. The fraction of spurious taxa was generally lower based on ASV analysis, but varied depending on the gene region targeted and the barcoding system used. A relative abundance of 0.25% was found as an effective threshold below which the analysis of spurious taxa can be prevented to a large extent in both OTU- and ASV-based analysis approaches. Using this cutoff improved the reproducibility of analysis, i.e., variation in richness estimates was reduced by 38% compared with singleton filtering using six human fecal samples across seven sequencing runs. Beta-diversity analysis of human fecal communities was markedly affected by both the filtering strategy and the type of phylogenetic distances used for comparison, highlighting the importance of carefully analyzing data before drawing conclusions on microbiome changes. In summary, handling of artifact sequences during bioinformatic processing of 16S rRNA gene amplicon data requires careful attention to avoid the generation of misleading findings. We propose the concept of effective richness to facilitate the comparison of alpha-diversity across studies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jun-ichi Kanatani ◽  
Masanori Watahiki ◽  
Keiko Kimata ◽  
Tomoko Kato ◽  
Kaoru Uchida ◽  
...  

Abstract Background Legionellosis is caused by the inhalation of aerosolized water contaminated with Legionella bacteria. In this study, we investigated the prevalence of Legionella species in aerosols collected from outdoor sites near asphalt roads, bathrooms in public bath facilities, and other indoor sites, such as buildings and private homes, using amoebic co-culture, quantitative PCR, and 16S rRNA gene amplicon sequencing. Results Legionella species were not detected by amoebic co-culture. However, Legionella DNA was detected in 114/151 (75.5%) air samples collected near roads (geometric mean ± standard deviation: 1.80 ± 0.52 log10 copies/m3), which was comparable to the numbers collected from bathrooms [15/21 (71.4%), 1.82 ± 0.50] but higher than those collected from other indoor sites [11/30 (36.7%), 0.88 ± 0.56] (P < 0.05). The amount of Legionella DNA was correlated with the monthly total precipitation (r = 0.56, P < 0.01). It was also directly and inversely correlated with the daily total precipitation for seven days (r = 0.21, P = 0.01) and one day (r = − 0.29, P < 0.01) before the sampling day, respectively. 16S rRNA gene amplicon sequencing revealed that Legionella species were detected in 9/30 samples collected near roads (mean proportion of reads, 0.11%). At the species level, L. pneumophila was detected in 2/30 samples collected near roads (the proportion of reads, 0.09 and 0.11% of the total reads number in each positive sample). The three most abundant bacterial genera in the samples collected near roads were Sphingomonas, Streptococcus, and Methylobacterium (mean proportion of reads; 21.1%, 14.6%, and 1.6%, respectively). In addition, the bacterial diversity in outdoor environment was comparable to that in indoor environment which contains aerosol-generating features and higher than that in indoor environment without the features. Conclusions DNA from Legionella species was widely present in aerosols collected from outdoor sites near asphalt roads, especially during the rainy season. Our findings suggest that there may be a risk of exposure to Legionella species not only in bathrooms but also in the areas surrounding asphalt roads. Therefore, the possibility of contracting legionellosis in daily life should be considered.


2021 ◽  
Author(s):  
Seppo Virtanen ◽  
Schahzad Saqib ◽  
Tinja Kanerva ◽  
Pekka Nieminen ◽  
Ilkka Kalliala ◽  
...  

Abstract Background: Amplicon sequencing of kingdom-specific tags such as 16S rRNA gene for bacteria and internal transcribed spacer (ITS) region for fungi are widely used for investigating microbial populations. So far most human studies have focused on bacteria while studies on host-associated fungi in health and disease have only recently started to accumulate. To enable cost-effective parallel analysis of bacterial and fungal communities in human and environmental samples, we developed a method where 16S rRNA gene and ITS-1 amplicons were pooled together for a single Illumina MiSeq or HiSeq run and analysed after primer-based segregation. Taxonomic assignments were performed with Blast in combination with an iterative text-extraction based filtration approach, which uses extensive literature records from public databases to select the most probable hits that were further validated by shotgun metagenomic sequencing. Results: Using 50 vaginal samples, we show that the combined run provides comparable results on bacterial composition and diversity to conventional 16S rRNA gene amplicon sequencing. The text-extraction-based taxonomic assignment guided tool provided ecosystem specific annotations that were confirmed by Metagenomic Phylogenetic Analysis (MetaPhlAn). The metagenome analysis revealed distinct functional differences between the bacterial community types while fungi were undetected, despite being identified in all samples based on ITS amplicons. Co-abundance analysis of bacteria and fungi did not show strong between-kingdom correlations within the vaginal ecosystem of healthy women.Conclusion: Combined amplicon sequencing for bacteria and fungi provides a simple and cost-effective method for simultaneous analysis of microbiota and mycobiota within the same samples. Text extraction-based annotation tool facilitates the characterization and interpretation of defined microbial communities from rapidly accumulating sequencing and metadata readily available through public databases.


Sign in / Sign up

Export Citation Format

Share Document