scholarly journals Sentinel versus passive surveillance for measuring changes in dengue incidence: Evidence from three concurrent surveillance systems in Iquitos, Peru

2016 ◽  
Author(s):  
Sandra Olkowski ◽  
Steven T. Stoddard ◽  
Eric S. Halsey ◽  
Amy C. Morrisson ◽  
Christopher M. Barker ◽  
...  

Monitoring changes in infectious disease incidence is fundamental to outbreak detection and response, intervention outcome monitoring, and identifying environmental correlates of transmission. In the case of dengue, little is known about how consistently surveillance data track disease burden in a population over time. Here we use four years of monthly dengue incidence data from three sources: population-based ('passive') surveillance including suspected cases, 'sentinel' surveillance with 100% laboratory confirmation and complete reporting, and door-to-door ('cohort') surveillance conducted three times per week in Iquitos, Peru, to quantify their relative consistency and timeliness. Data consistency was evaluated using annual and monthly expansion factors (EFs) as cohort incidence divided by incidence in each surveillance system, to assess their reliability for estimating disease burden (annual) and monitoring disease trends (monthly). Annually, passive surveillance data more closely estimated cohort incidence (average annual EF=5) than did data from sentinel surveillance (average annual EF=19). Monthly passive surveillance data generally were more consistent (ratio of sentinel/passive EF standard deviations=2.2) but overestimated incidence in 26% (11/43) of months, most often during the second half of the annual high season as dengue incidence typically wanes from its annual peak. Increases in sentinel surveillance incidence were correlated temporally (correlation coefficient = 0.86) with increases in the cohort, while passive surveillance data were significantly correlated at both zero-lag and a one-month lag (0.63 and 0.44, respectively). Together these results suggest that, rather than relying on a single data stream, a clearer picture of changes in infectious disease incidence might be achieved by combining the timeliness of sentinel surveillance with the representativeness of passive surveillance.

2018 ◽  
Vol 28 (6) ◽  
pp. 1826-1840 ◽  
Author(s):  
Theodore Lytras ◽  
Kassiani Gkolfinopoulou ◽  
Stefanos Bonovas ◽  
Baltazar Nunes

Timely detection of the seasonal influenza epidemic is important for public health action. We introduce FluHMM, a simple but flexible Bayesian algorithm to detect and monitor the seasonal epidemic on sentinel surveillance data. No comparable historical data are required for its use. FluHMM segments a typical influenza surveillance season into five distinct phases with clear interpretation (pre-epidemic, epidemic growth, epidemic plateau, epidemic decline and post-epidemic) and provides the posterior probability of being at each phase for every week in the period under surveillance, given the available data. An alert can be raised when the probability that the epidemic has started exceeds a given threshold. An accompanying R package facilitates the application of this method in public health practice. We apply FluHMM on 12 seasons of sentinel surveillance data from Greece, and show that it achieves very good sensitivity, timeliness and perfect specificity, thereby demonstrating its usefulness. We further discuss advantages and limitations of the method, providing suggestions on how to apply it and highlighting potential future extensions such as with integrating multiple surveillance data streams.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
David Atrubin ◽  
Michael Wiese

This roundtable will focus on how traditional emergency department syndromic surveillance systems should be used to conduct daily or periodic disease surveillance.  As outbreak detection using these systems has demonstrated an equivocal track record, epidemiologists have sought out other interesting uses for these systems.  Over the numerous years of the International Society for Disease Surveillance (ISDS) Conference, many of these studies have been presented; however, there has been a dearth of discussion related to how these systems should be used. This roundtable offers a forum to discuss best practices for the routine use of emergency department syndromic surveillance data.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244921
Author(s):  
Fleur Hierink ◽  
Emelda A. Okiro ◽  
Antoine Flahault ◽  
Nicolas Ray

Background Geographical accessibility to healthcare is an important component of infectious disease dynamics. Timely access to health facilities can prevent disease progression and enables disease notification through surveillance systems. The importance of accounting for physical accessibility in response to infectious diseases is increasingly recognized. Yet, there is no comprehensive review of the literature available on infectious diseases in relation to geographical accessibility to care. Therefore, we aimed at evaluating the current state of knowledge on the effect of geographical accessibility to health care on infectious diseases in low- and middle-income countries. Methods and findings A search strategy was developed and conducted on Web of Science and PubMed on 4 March 2019. New publications were checked until May 28, 2020. All publication dates were eligible. Data was charted into a tabular format and descriptive data analyses were carried out to identify geographical regions, infectious diseases, and measures of physical accessibility among other factors. Search queries in PubMed and Web of Science yielded 560 unique publications. After title and abstract screening 99 articles were read in full detail, from which 64 articles were selected, including 10 manually. Results of the included publications could be broadly categorized into three groups: (1) decreased spatial accessibility to health care was associated with a higher infectious disease burden, (2) decreased accessibility was associated to lower disease reporting, minimizing true understanding of disease distribution, and (3) the occurrence of an infectious disease outbreak negatively impacted health care accessibility in affected regions. In the majority of studies, poor geographical accessibility to health care was associated with higher disease incidence, more severe health outcomes, higher mortality, and lower disease reporting. No difference was seen between countries or infectious diseases. Conclusions Currently, policy-makers and scientists rely on data collected through passive surveillance systems, introducing uncertainty on disease estimates for remote communities. Our results highlight the need for increasing integration of geographical accessibility measures in disease risk modelling, allowing more realistic disease estimates and enhancing our understanding of true disease burden. Additionally, disease risk estimates could be used in turn to optimize the allocation of health services in the prevention and detection of infectious diseases.


Author(s):  
Victor A. Alegana ◽  
Peter M. Atkinson

AbstractAfrica continues to experience the highest infectious disease burden despite an increase in investments. These include investments in malaria, HIV/AIDS, tuberculosis, as well as in communicable diseases. The global targets are to reduce the burden of these diseases through improved surveillance, prevention of outbreaks, effective case management, elimination and eventually, eradication. Achieving these targets, however, is limited by the poor geographic descriptions of the disease burden. Of the big five infectious disease burdens, malaria is the most advanced in terms of mapping its distribution. Malaria cartography has since formed the evidence-base for the design of many national malaria control programmes. This chapter focuses on malaria as an example, demonstrating its geographical descriptions. The availability of georeferenced malaria case data whether based on prevalence or incidence indicators has been used extensively in the mapping of geographical extents at national and sub-national scales. However, routine surveillance data is emerging as a valuable methodology of tracking burden in sub-Saharan Africa. A particular focus of this chapter is the use of routine national health systems surveillance data to describe, at a fine-scale, the distribution of malaria. However, routine data can be applied to the cartographic description of other diseases beyond malaria. The methodological aspects of burden estimation from routine surveillance platforms and cartography are highlighted.


Author(s):  
Stephen A. Lauer ◽  
Alexandria C. Brown ◽  
Nicholas G. Reich

Forecasting transmission of infectious diseases, especially for vector-borne diseases, poses unique challenges for researchers. Behaviors of and interactions between viruses, vectors, hosts, and the environment each play a part in determining the transmission of a disease. Public health surveillance systems and other sources provide valuable data that can be used to accurately forecast disease incidence. However, many aspects of common infectious disease surveillance data are imperfect: cases may be reported with a delay or in some cases not at all, data on vectors may not be available, and case data may not be available at high geographical or temporal resolution. In the face of these challenges, researchers must make assumptions to either account for these underlying processes in a mechanistic model or to justify their exclusion altogether in a statistical model.


2020 ◽  
Vol 12 (5) ◽  
pp. 375-377
Author(s):  
David N Durrheim ◽  
Jon K Andrus

Abstract Measles causes a substantial disease burden for all countries, while mortality is greatest in underserved, marginalized populations. Global measles eradication is feasible and the strategies critically rely upon well-functioning national immunisation programs and surveillance systems. All six regions of the World Health Organisation have adopted measles elimination targets. The Rule of Rescue and the principle of justice leave no ethical place for health programs, governments, global public health bodies or donors to hide if they impede efforts to eradicate measles globally by not taking all necessary actions to establish a global eradication target and committing the resources essential to achieve this goal.


Author(s):  
Manju Rahi ◽  
Payal Das ◽  
Amit Sharma

Abstract Malaria surveillance is weak in high malaria burden countries. Surveillance is considered as one of the core interventions for malaria elimination. Impressive reductions in malaria-associated morbidity and mortality have been achieved across the globe, but sustained efforts need to be bolstered up to achieve malaria elimination in endemic countries like India. Poor surveillance data become a hindrance in assessing the progress achieved towards malaria elimination and in channelizing focused interventions to the hotspots. A major obstacle in strengthening India’s reporting systems is that the surveillance data are captured in a fragmented manner by multiple players, in silos, and is distributed across geographic regions. In addition, the data are not reported in near real-time. Furthermore, multiplicity of malaria data resources limits interoperability between them. Here, we deliberate on the acute need of updating India’s surveillance systems from the use of aggregated data to near real-time case-based surveillance. This will help in identifying the drivers of malaria transmission in any locale and therefore will facilitate formulation of appropriate interventional responses rapidly.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Elizabeth Hyde ◽  
Matthew H. Bonds ◽  
Felana A. Ihantamalala ◽  
Ann C. Miller ◽  
Laura F. Cordier ◽  
...  

Abstract Background Reliable surveillance systems are essential for identifying disease outbreaks and allocating resources to ensure universal access to diagnostics and treatment for endemic diseases. Yet, most countries with high disease burdens rely entirely on facility-based passive surveillance systems, which miss the vast majority of cases in rural settings with low access to health care. This is especially true for malaria, for which the World Health Organization estimates that routine surveillance detects only 14% of global cases. The goal of this study was to develop a novel method to obtain accurate estimates of disease spatio-temporal incidence at very local scales from routine passive surveillance, less biased by populations' financial and geographic access to care. Methods We use a geographically explicit dataset with residences of the 73,022 malaria cases confirmed at health centers in the Ifanadiana District in Madagascar from 2014 to 2017. Malaria incidence was adjusted to account for underreporting due to stock-outs of rapid diagnostic tests and variable access to healthcare. A benchmark multiplier was combined with a health care utilization index obtained from statistical models of non-malaria patients. Variations to the multiplier and several strategies for pooling neighboring communities together were explored to allow for fine-tuning of the final estimates. Separate analyses were carried out for individuals of all ages and for children under five. Cross-validation criteria were developed based on overall incidence, trends in financial and geographical access to health care, and consistency with geographic distribution in a district-representative cohort. The most plausible sets of estimates were then identified based on these criteria. Results Passive surveillance was estimated to have missed about 4 in every 5 malaria cases among all individuals and 2 out of every 3 cases among children under five. Adjusted malaria estimates were less biased by differences in populations’ financial and geographic access to care. Average adjusted monthly malaria incidence was nearly four times higher during the high transmission season than during the low transmission season. By gathering patient-level data and removing systematic biases in the dataset, the spatial resolution of passive malaria surveillance was improved over ten-fold. Geographic distribution in the adjusted dataset revealed high transmission clusters in low elevation areas in the northeast and southeast of the district that were stable across seasons and transmission years. Conclusions Understanding local disease dynamics from routine passive surveillance data can be a key step towards achieving universal access to diagnostics and treatment. Methods presented here could be scaled-up thanks to the increasing availability of e-health disease surveillance platforms for malaria and other diseases across the developing world.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fatma Saleh ◽  
Jovin Kitau ◽  
Flemming Konradsen ◽  
Leonard E. G. Mboera ◽  
Karin L. Schiøler

Abstract Background Disease surveillance is a cornerstone of outbreak detection and control. Evaluation of a disease surveillance system is important to ensure its performance over time. The aim of this study was to assess the performance of the core and support functions of the Zanzibar integrated disease surveillance and response (IDSR) system to determine its capacity for early detection of and response to infectious disease outbreaks. Methods This cross-sectional descriptive study involved 10 districts of Zanzibar and 45 public and private health facilities. A mixed-methods approach was used to collect data. This included document review, observations and interviews with surveillance personnel using a modified World Health Organization generic questionnaire for assessing national disease surveillance systems. Results The performance of the IDSR system in Zanzibar was suboptimal particularly with respect to early detection of epidemics. Weak laboratory capacity at all levels greatly hampered detection and confirmation of cases and outbreaks. None of the health facilities or laboratories could confirm all priority infectious diseases outlined in the Zanzibar IDSR guidelines. Data reporting was weakest at facility level, while data analysis was inadequate at all levels (facility, district and national). The performance of epidemic preparedness and response was generally unsatisfactory despite availability of rapid response teams and budget lines for epidemics in each district. The support functions (supervision, training, laboratory, communication and coordination, human resources, logistic support) were inadequate particularly at the facility level. Conclusions The IDSR system in Zanzibar is weak and inadequate for early detection and response to infectious disease epidemics. The performance of both core and support functions are hampered by several factors including inadequate human and material resources as well as lack of motivation for IDSR implementation within the healthcare delivery system. In the face of emerging epidemics, strengthening of the IDSR system, including allocation of adequate resources, should be a priority in order to safeguard human health and economic stability across the archipelago of Zanzibar.


Sign in / Sign up

Export Citation Format

Share Document