scholarly journals Coordination of brain wide activity dynamics by dopaminergic neurons

2016 ◽  
Author(s):  
Garret Stuber ◽  
Heather Decot ◽  
Vijay Namboodiri ◽  
Wei Gao ◽  
Jenna McHenry ◽  
...  

Several neuropsychiatric conditions, such as addiction, schizophrenia, and depression may arise in part from dysregulated activity of ventral tegmental area dopaminergic (THVTA) neurons, as well as from more global maladaptation in neurocircuit function. However, whether THVTA activity affects large-scale brain-wide function remains unknown. Here, we selectively activated THVTA neurons in transgenic rats and measured resulting changes in whole-brain activity using stimulus-evoked functional magnetic resonance imaging (fMRI). Selective optogenetic stimulation of THVTA neurons not only enhanced cerebral blood volume (CBV) signals in striatal target regions in a dopamine receptor dependent fashion, but also engaged many additional anatomically defined regions throughout the brain. In addition, repeated pairing of THVTA neuronal activity with forepaw stimulation, produced an expanded brain-wide sensory representation. These data suggest that modulation of THVTA neurons can impact brain dynamics across many distributed anatomically distinct regions, even those that receive little to no direct THVTA input.

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jay W. Reddy ◽  
Maya Lassiter ◽  
Maysamreza Chamanzar

Abstract Targeted light delivery into biological tissue is needed in applications such as optogenetic stimulation of the brain and in vivo functional or structural imaging of tissue. These applications require very compact, soft, and flexible implants that minimize damage to the tissue. Here, we demonstrate a novel implantable photonic platform based on a high-density, flexible array of ultracompact (30 μm × 5 μm), low-loss (3.2 dB/cm at λ = 680 nm, 4.1 dB/cm at λ = 633 nm, 4.9 dB/cm at λ = 532 nm, 6.1 dB/cm at λ = 450 nm) optical waveguides composed of biocompatible polymers Parylene C and polydimethylsiloxane (PDMS). This photonic platform features unique embedded input/output micromirrors that redirect light from the waveguides perpendicularly to the surface of the array for localized, patterned illumination in tissue. This architecture enables the design of a fully flexible, compact integrated photonic system for applications such as in vivo chronic optogenetic stimulation of brain activity.


2021 ◽  
Author(s):  
Francesco Resta ◽  
Elena Montagni ◽  
Giuseppe de Vito ◽  
Alessandro Scaglione ◽  
Anna Letizia Allegra Mascaro ◽  
...  

In rodent motor cortex, the rostral forelimb area (RFA) and the caudal forelimb area (CFA) are major actors in orchestrating the control of forelimb complex movements. However, their intrinsic connections and reciprocal functional organization are still unclear, limiting our understanding of how the brain coordinates and executes voluntary movements. Here we causally probed cortical connectivity and activation patterns triggered by transcranial optogenetic stimulation of ethologically relevant complex movements exploiting a novel large-scale all-optical method in awake mice. Results show specific activation features for each movement class, providing evidence for a segregated functional organization of CFA and RFA. Importantly, we identified a second discrete lateral grasping representation area, namely lateral forelimb area (LFA), with unique connectivity and activation patterns. Therefore, we propose the LFA as a distinct motor representation in the forelimb somatotopic motor map.


Author(s):  
Stefano Vassanelli

Establishing direct communication with the brain through physical interfaces is a fundamental strategy to investigate brain function. Starting with the patch-clamp technique in the seventies, neuroscience has moved from detailed characterization of ionic channels to the analysis of single neurons and, more recently, microcircuits in brain neuronal networks. Development of new biohybrid probes with electrodes for recording and stimulating neurons in the living animal is a natural consequence of this trend. The recent introduction of optogenetic stimulation and advanced high-resolution large-scale electrical recording approaches demonstrates this need. Brain implants for real-time neurophysiology are also opening new avenues for neuroprosthetics to restore brain function after injury or in neurological disorders. This chapter provides an overview on existing and emergent neurophysiology technologies with particular focus on those intended to interface neuronal microcircuits in vivo. Chemical, electrical, and optogenetic-based interfaces are presented, with an analysis of advantages and disadvantages of the different technical approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuka Inamochi ◽  
Kenji Fueki ◽  
Nobuo Usui ◽  
Masato Taira ◽  
Noriyuki Wakabayashi

AbstractSuccessful adaptation to wearing dentures with palatal coverage may be associated with cortical activity changes related to tongue motor control. The purpose was to investigate the brain activity changes during tongue movement in response to a new oral environment. Twenty-eight fully dentate subjects (mean age: 28.6-years-old) who had no experience with removable dentures wore experimental palatal plates for 7 days. We measured tongue motor dexterity, difficulty with tongue movement, and brain activity using functional magnetic resonance imaging during tongue movement at pre-insertion (Day 0), as well as immediately (Day 1), 3 days (Day 3), and 7 days (Day 7) post-insertion. Difficulty with tongue movement was significantly higher on Day 1 than on Days 0, 3, and 7. In the subtraction analysis of brain activity across each day, activations in the angular gyrus and right precuneus on Day 1 were significantly higher than on Day 7. Tongue motor impairment induced activation of the angular gyrus, which was associated with monitoring of the tongue’s spatial information, as well as the activation of the precuneus, which was associated with constructing the tongue motor imagery. As the tongue regained the smoothness in its motor functions, the activation of the angular gyrus and precuneus decreased.


Science ◽  
2021 ◽  
Vol 372 (6537) ◽  
pp. eabf4740
Author(s):  
K. Schmack ◽  
M. Bosc ◽  
T. Ott ◽  
J. F. Sturgill ◽  
A. Kepecs

Hallucinations, a central symptom of psychotic disorders, are attributed to excessive dopamine in the brain. However, the neural circuit mechanisms by which dopamine produces hallucinations remain elusive, largely because hallucinations have been challenging to study in model organisms. We developed a task to quantify hallucination-like perception in mice. Hallucination-like percepts, defined as high-confidence false detections, increased after hallucination-related manipulations in mice and correlated with self-reported hallucinations in humans. Hallucination-like percepts were preceded by elevated striatal dopamine levels, could be induced by optogenetic stimulation of mesostriatal dopamine neurons, and could be reversed by the antipsychotic drug haloperidol. These findings reveal a causal role for dopamine-dependent striatal circuits in hallucination-like perception and open new avenues to develop circuit-based treatments for psychotic disorders.


2015 ◽  
Vol 370 (1677) ◽  
pp. 20140201 ◽  
Author(s):  
Kristine Krug ◽  
C. Daniel Salzman ◽  
Scott Waddell

Causal methods to interrogate brain function have been employed since the advent of modern neuroscience in the nineteenth century. Initially, randomly placed electrodes and stimulation of parts of the living brain were used to localize specific functions to these areas. Recent technical developments have rejuvenated this approach by providing more precise tools to dissect the neural circuits underlying behaviour, perception and cognition. Carefully controlled behavioural experiments have been combined with electrical devices, targeted genetically encoded tools and neurochemical approaches to manipulate information processing in the brain. The ability to control brain activity in these ways not only deepens our understanding of brain function but also provides new avenues for clinical intervention, particularly in conditions where brain processing has gone awry.


2013 ◽  
Vol 347-350 ◽  
pp. 2516-2520
Author(s):  
Jian Hua Jiang ◽  
Xu Yu ◽  
Zhi Xing Huang

Over the last decade, functional magnetic resonance imaging (fMRI) has become a primary tool to predict the brain activity.During the past research, researchers transfer the focus from the picture to the word.The results of these researches are relatively successful. In this paper, several typical methods which are machine learning methods are introduced. And most of the methods are by using fMRI data associated with words features. The semantic features (properties or factors) support words neural representation, and have a certain commonality in the people.The purpose of the application of these methods is used for prediction or classification.


2015 ◽  
Vol 370 (1677) ◽  
pp. 20140209 ◽  
Author(s):  
Sliman J. Bensmaia

The first decade and a half of the twenty-first century brought about two major innovations in neuroprosthetics: the development of anthropomorphic robotic limbs that replicate much of the function of a native human arm and the refinement of algorithms that decode intended movements from brain activity. However, skilled manipulation of objects requires somatosensory feedback, for which vision is a poor substitute. For upper-limb neuroprostheses to be clinically viable, they must therefore provide for the restoration of touch and proprioception. In this review, I discuss efforts to elicit meaningful tactile sensations through stimulation of neurons in somatosensory cortex. I focus on biomimetic approaches to sensory restoration, which leverage our current understanding about how information about grasped objects is encoded in the brain of intact individuals. I argue that not only can sensory neuroscience inform the development of sensory neuroprostheses, but also that the converse is true: stimulating the brain offers an exceptional opportunity to causally interrogate neural circuits and test hypotheses about natural neural coding.


1976 ◽  
Vol 4 (4) ◽  
pp. 211-222 ◽  
Author(s):  
U J Jovanović

Changes in the electro-encephalogram, and in the electro-oculogram electromyogram, ECG, blood supply, blood pressure, electrical skin activity and neurological/psychiatric findings, were investigated in 100 patients given single administrations of 200 mg of pentoxifylline (BL 191). It is concluded from the changes in the EEG wave patterns that pentoxifylline produces a beneficial effect on the cerebral processes contributing to bio-electrical brain activity. Pentoxifylline can be classed as a substance with microcirculatory/metabolic effects on the brain, which lead to stimulation of psychomotor behaviour.


Sign in / Sign up

Export Citation Format

Share Document